首页 | 本学科首页   官方微博 | 高级检索  
     

基于自学习特征的相关滤波跟踪算法
引用本文:朱学峰,徐天阳,吴小俊. 基于自学习特征的相关滤波跟踪算法[J]. 计算机工程与应用, 2019, 55(20): 58-64. DOI: 10.3778/j.issn.1002-8331.1808-0048
作者姓名:朱学峰  徐天阳  吴小俊
作者单位:江南大学 物联网工程学院,江苏 无锡,214122;江南大学 物联网工程学院,江苏 无锡,214122;江南大学 物联网工程学院,江苏 无锡,214122
摘    要:依靠高效的鉴别回归模型和多线索特征,如方向梯度直方图(HOG)特征和颜色名(CN)特征,相关滤波(CF)跟踪算法取得了优异的跟踪效果。但其弱点是不能应对由表观变化过程中鉴别信息不充分而导致的跟踪失败。针对这一问题,提出了基于自学习特征的相关滤波跟踪算法(SLDCF)。其中,自学习特征探索了相邻帧之间协同表示的特性,能够学习到相邻帧之间的目标变化情况,同时有效减少背景的干扰,以提高滤波器的鉴别性。通过标准视频数据集上的验证对比实验,其跟踪效果优于其余传统的相关滤波跟踪算法,证明了该算法的有效性和鲁棒性。

关 键 词:鉴别回归模型  多线索特征  方向梯度直方图  颜色名  相关滤波跟踪算法  自学习特征

Correlation Filter Tracking Based on Self-Learning Features
ZHU Xuefeng,XU Tianyang,WU Xiaojun. Correlation Filter Tracking Based on Self-Learning Features[J]. Computer Engineering and Applications, 2019, 55(20): 58-64. DOI: 10.3778/j.issn.1002-8331.1808-0048
Authors:ZHU Xuefeng  XU Tianyang  WU Xiaojun
Affiliation:School of IoT Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
Abstract:The Correlation Filter(CF) tracking algorithms have achieved outstanding performance by using efficient discriminative regression model and multi-cue features, such as Histograms of Oriented Gradients(HOG) and Color Names(CN). However, the performance still suffers from insufficient discriminative information during appearance variations. To mitigate this problem, a Self-Learning based Discriminative Correlation Filter tracking algorithm(SLDCF) is proposed. The self-learning feature is obtained by exploring the collaborative representations between successive frames. It extracts the information from target variation and alleviates the impact from background. The experimental results on the standard video benchmarking dataset demonstrate the effectiveness and robustness of the proposed algorithm and its superior performance in comparison with other traditional correlation filter tracking algorithms.
Keywords:discriminative regression model  multi-cue features  histograms of oriented gradients  color names  correlation filter tracking algorithms  self-learning features  
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号