首页 | 本学科首页   官方微博 | 高级检索  
     

变分自编码器模型综述
引用本文:翟正利,梁振明,周 炜,孙 霞. 变分自编码器模型综述[J]. 计算机工程与应用, 2019, 55(3): 1-9. DOI: 10.3778/j.issn.1002-8331.1810-0284
作者姓名:翟正利  梁振明  周 炜  孙 霞
作者单位:青岛理工大学  信息与控制工程学院,山东 青岛 266520
基金项目:国家自然科学基金(No.61502262)
摘    要:变分自编码器(VAE)作为深度隐空间生成模型的一种,近年来其表现性能取得了极大的成功,尤其是在图像生成方面。变分自编码器模型作为无监督式特征学习的重要工具之一,可以通过学习隐编码空间与数据生成空间的特征映射,进而在输出端重构生成输入数据。梳理了传统变分自编码器模型及其衍生变体模型的发展与研究现状,并就此做了总结和对比,最后分析了变分自编码器模型存在的问题与挑战,并就可能的发展趋势做了展望。

关 键 词:深度隐空间生成模型  无监督学习  变分自编码器  图像生成

Research Overview of Variational Auto-Encoders Models
ZHAI Zhengli,LIANG Zhenming,ZHOU Wei,SUN Xia. Research Overview of Variational Auto-Encoders Models[J]. Computer Engineering and Applications, 2019, 55(3): 1-9. DOI: 10.3778/j.issn.1002-8331.1810-0284
Authors:ZHAI Zhengli  LIANG Zhenming  ZHOU Wei  SUN Xia
Affiliation:School of Information and Control Engineering, Qingdao University of Technology, Qingdao, Shandong 266520, China
Abstract:Variational Auto-Encoders(VAE) as one of deep latent space generative models have been immensely success on its performance in recent years, especially in image generation. VAEs models are important tools for unsupervised feature learning, which can learn a mapping from a latent encoding space to a data generative space and reconstruct the inputs to outputs. Firstly, this paper reviews the development and present research situation of the traditional variational auto-encoders and its variants, summarizes and compares the performance for all of them. Finally, the existing difficulties and challenges of VAEs are analyzed, and the possible development direction is prospected.
Keywords:deep latent space generative models  unsupervised learning  Variational Auto-Encoders(VAEs)  image generation  
本文献已被 维普 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号