首页 | 本学科首页   官方微博 | 高级检索  
     

共享交通的时空轨迹检索与群体发现
引用本文:段宗涛,龚学辉,唐蕾,陈柘. 共享交通的时空轨迹检索与群体发现[J]. 计算机应用, 2019, 39(1): 220-226. DOI: 10.11772/j.issn.1001-9081.2018061291
作者姓名:段宗涛  龚学辉  唐蕾  陈柘
作者单位:长安大学信息工程学院,西安,710064;长安大学信息工程学院,西安,710064;长安大学信息工程学院,西安,710064;长安大学信息工程学院,西安,710064
基金项目:陕西省重点科技创新团队项目(2017KCT-29);陕西省工业科技攻关项目(2016GY078);陕西省重点研发计划项目(2017GY-072)。
摘    要:为解决共享交通下的共乘用户群体发现效率低、准确率不高问题,依据R-树原理建立Geo OD-Tree索引,并在此基础上提出以最大化共乘率为目标的群体发现策略。首先,对原始时空轨迹数据进行特征提取与标定处理,挖掘有效出行起讫点(OD)轨迹;其次,针对用户起讫点轨迹的特征,建立Geo OD-Tree索引进行有效的存储管理;最后,给出以最大化共乘行程为目标的群体发现模型,并运用K最近邻(KNN)查询对搜索空间剪枝压缩,提高群体发现效率。采用西安市近12 000辆出租车营运轨迹数据,选取动态时间规整(DTW)等典型算法与所提算法在查询效率与准确率上进行性能对比分析。与DTW算法相比,所提算法的准确率提高了10. 12%,查询效率提高了约15倍。实验结果表明提出的群体发现策略能有效提高共乘用户群体发现的准确率和效率,可有效提升共乘出行方式的出行率。

关 键 词:共乘出行  群体发现  时空轨迹  3维R树  起讫点
收稿时间:2018-06-21
修稿时间:2018-08-14

Spatio-temporal trajectory retrieval and group discovery in shared transportation
DUAN Zongtao,GONG Xuehui,TANG Lei,CHEN Zhe. Spatio-temporal trajectory retrieval and group discovery in shared transportation[J]. Journal of Computer Applications, 2019, 39(1): 220-226. DOI: 10.11772/j.issn.1001-9081.2018061291
Authors:DUAN Zongtao  GONG Xuehui  TANG Lei  CHEN Zhe
Affiliation:School of Information Technology, Chang'an University, Xi'an Shaanxi 710064, China
Abstract:Concerning low efficiency and accuracy of the ridesharing user group discovery in shared transportation environment, a GeoOD-Tree index was established based on R-tree principle, and a group discovery strategy to maximize the multiplying rate was proposed. Firstly, the feature extraction and calibration processing of original spatio-temporal trajectory data was carried out to mine effective Origin-Destination (OD) trajectory. Secondly, a data structure termed GeoOD-Tree was established for effective storage management of OD trajectory. Finally, a group discovery model aiming at maximizing ridesharing travel was proposed, and a pruning strategy using by K Nearest Neighbors (KNN) query was introduced to improve the efficiency of group discovery. The proposed method was evaluated with extensive experiments on a real dataset of 12000 taxis in Xi'an, in comparison experiments with Dynamic Time Warping (DTW) algorithm, the accuracy and efficiency of the proposed algorithm was increased by 10.12% and 1500% respectively. The experimental results show that the proposed group discovery strategy can effectively improve the accuracy and efficiency of ridesharing user group discovery, and it can effectively improve the rideshared travel rate.
Keywords:ridesharing   group discovery   spatial-temporal trajectory   3-Dimensional R-tree (3DR-tree)   Origin-Destination (OD)
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号