首页 | 本学科首页   官方微博 | 高级检索  
     


Splitting upconversion emission and phonon‐assisted population inversion of Ba2Y(BO3)2Cl:Yb3+, Er3+ phosphor
Authors:Anjun Huang  Zhengwen Yang  Chengye Yu  Jianbei Qiu  Zhiguo Song
Affiliation:College of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, China
Abstract:Upconversion (UC) peak of 4S3/24I15/2 transition of Er3+ is close to that of 2H11/24I15/2 transition. The UC emission splitting of Er3+ caused by coordination fields of host results in that it is difficult to confirm which transitions (4S3/24I15/2 or 2H11/24I15/2) are responsible for the splitting UC emission peaks. In this work, the UC luminescence peaks located at 524, 540, 551, 565, 662, 677, and 683 nm were observed in the Ba2Y(BO3)2Cl:Yb3+, Er3+ phosphor upon the 980 nm excitation. The 524 and 540 nm UC emissions intensity were increased, while the 551 and 565 nm UC emissions intensity were decreased with the temperature increasing from 323 to 573 K, which is attributed to the phonon‐assisted population inversion from the 4S3/2 to 2H11/2 level. The temperature dependence of UC emission spectra demonstrated that the 524 and 540 nm UC emissions are from 2H11/24I15/2 transition, and 551 and 565 nm UC emissions are from the 4S3/24I15/2 transition. Temperature sensing property was characterized by the UC intensity ratio of the 2H11/24I15/2 transition to 4S3/24I15/2 transition. The Ba2Y(BO3)2Cl:Yb3+,Er3+ phosphor has potential application as the non‐contact temperature sensor.
Keywords:luminescence  phosphors  sensors  up‐conversion
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号