首页 | 本学科首页   官方微博 | 高级检索  
     

改进的AdaBoost算法在IDS入侵检测中的应用
引用本文:陈念,王汝传. 改进的AdaBoost算法在IDS入侵检测中的应用[J]. 计算机工程与应用, 2010, 46(21): 94-96. DOI: 10.3778/j.issn.1002-8331.2010.21.026
作者姓名:陈念  王汝传
作者单位:1.池州学院 计算机科学系,安徽 池州 247000 2.南京邮电大学 计算机科学系,南京 210093
基金项目:安徽省优秀青年人才基金 
摘    要:网络入侵检测系统IDS中,异常数据所占的比例非常小,属于小类样本,却是检测的目标。在AdaBoost算法基础上进行改进,通过对大类样本权重设置阈值,对权值超过阈值的样本进行相应处理,来削弱分类器对大类样本错分的重视程度,减轻下一级训练的负担,从而有效地强化对小类错分样本的学习,提高入侵检测的精度,降低误报率和漏报率。方法在KDD-99数据集上进行实验,并与SVM方法检测结果进行比较,取得了很好的效果。

关 键 词:阈值  AdaBoost算法  入侵检测系统  分类器  
收稿时间:2010-02-25
修稿时间:2010-5-13 

Detection of intrusion samples in IDS based on improved AdaBoost algorithm
CHEN Nian,WANG Ru-chuan. Detection of intrusion samples in IDS based on improved AdaBoost algorithm[J]. Computer Engineering and Applications, 2010, 46(21): 94-96. DOI: 10.3778/j.issn.1002-8331.2010.21.026
Authors:CHEN Nian  WANG Ru-chuan
Affiliation:1.Department of Computer Science,Chizhou College,Chizhou,Anhui 247000,China 2.Department of Computer Science,Nanjing University of Posts and Telecommunications,Nanjing 210093,China
Abstract:In network intrusion detection system,abnormal samples are the goal of detection,although the proportion of them is very small.Based on AdaBoost algorithm,this paper sets threshold value to the samples of majority class and processes those whose weight is above the threshold.The improved algorithm can effectively reduce the burden of classifier on next level of training and strengthen the learning to the samples of minority class.The results experimented on KDD-99 sets and comparison with SVM method show the algorithm effectively reduces the false alarm rate and omission rate.
Keywords:threshold  AdaBoost algorithm  intrusion detection system  classifier
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号