3‐D Printing and Development of Fluoropolymer Based Reactive Inks |
| |
Authors: | Fidel D. Ruz‐Nuglo Lori J. Groven |
| |
Affiliation: | Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, United States |
| |
Abstract: | Engineering reactive materials is an ever present goal in the energetics community. The desire is to have energetics configured in such a manner that performance is tailored and energy delivery can be targeted. Additive manufacturing (3‐D printing) is one area that could significantly improve our capabilities in this area, if adequate formulations are developed. In this paper, fluoropolymer based reactive inks are developed with micron (mAl) and nanoscale aluminum (nAl) serving, as the fuel at high solids loading (up to 67 wt%) and their viscosity required for 3‐D printing is detailed. For the pen‐type technique and valves used in this work, it is required to have viscosities on the order of 104–105 cP. For printed traces with apparent diameters under <500 μm, the combustion velocities for both micron and nano scale aluminum formulations, are approximately identical: 30 ± 3 versus 32 ± 2 mm s?1, respectively. Further increasing the apparent diameter is shown to increase the combustion velocity in the case of the nanoscale aluminum formulation by four‐fold over that of the micron scale aluminum formulation, but it plateaus as it approaches an apparent diameter of 2 mm. The results suggest with proper architecture that tailorable combustion rates and energy delivery are feasible. |
| |
Keywords: | 3D printing aluminum direct‐write assembly energetic ink fluoropolymer reactive ink |
|
|