首页 | 本学科首页   官方微博 | 高级检索  
     

适应用户兴趣变化的改进型协同过滤算法
引用本文:胡伟健,滕飞,李灵芳,王欢. 适应用户兴趣变化的改进型协同过滤算法[J]. 计算机应用, 2016, 36(8): 2087-2091. DOI: 10.11772/j.issn.1001-9081.2016.08.2087
作者姓名:胡伟健  滕飞  李灵芳  王欢
作者单位:1. 西南交通大学 信息科学与技术学院, 成都 610031;2. 计算机软件新技术国家重点实验室(南京大学), 南京 210023;3. 电子科技大学 计算机科学与工程学院, 成都 611731
基金项目:网络智能信息处理四川省高校重点实验室开放课题资助项目(SZJJ2014-049)。
摘    要:协同过滤算法可以根据用户的历史行为记录去预测其可能喜欢的物品,是现在业界应用极为广泛的推荐算法。但传统的协同过滤算法并没有考虑到用户兴趣的概念漂移,在一些基于时间的协同过滤算法中对推荐时效性的考虑也有所欠缺。针对这些问题,结合用户兴趣随时间转移的特点,改进了相似度的度量方法,同时引入一种增强的时间衰减模型来度量预测值,并将这两种方式有机地结合起来,解决了用户兴趣的概念漂移问题并考虑了推荐算法的时效性。仿真实验中,分别在不同的数据集中对比了该算法与UserCF、TCNCF、PTCF以及TimeSVD++算法的预测评分准确度和TopN推荐准确度。实验结果表明,改进算法能够降低预测评分的均方根误差(RMSE),并在TopN推荐准确度上均优于对比算法。

关 键 词:协同过滤  个性化推荐  用户兴趣  欧氏距离  时效性  
收稿时间:2016-03-01
修稿时间:2016-05-15

Improved adaptive collaborative filtering algorithm to change of user interest
HU Weijian,TENG Fei,LI Lingfang,WANG Huan. Improved adaptive collaborative filtering algorithm to change of user interest[J]. Journal of Computer Applications, 2016, 36(8): 2087-2091. DOI: 10.11772/j.issn.1001-9081.2016.08.2087
Authors:HU Weijian  TENG Fei  LI Lingfang  WANG Huan
Affiliation:1. School of Information Science and Technology, Southwest Jiaotong University, Chengdu Sichuan 610031, China;2. State Key Laboratory for Novel Software Technology(Nanjing University), Nanjing Jiangsu 210023, China;3. School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu Sichuan 611731, China
Abstract:As a widely used recommendation algorithm in the industry, collaborative filtering algorithm can predict the likely favorite items based on the user's historical behavior records. However, the traditional collaborative filtering algorithms do not take into account the drifting of user interests, and there are also some deficiencies when the recommendation's timeliness is considered. To solve these problems, the measure method of similarity was improved by combining with the characteristics of user interests change with time. At the same time, an enhanced time attenuation model was introduced to measure the predictive value. By combining these two ways together, the concept drifting problem of user interests was solved and the timeliness of the recommendation algorithm was also considered. In the simulation experiment, predictive scoring accuracy and TopN recommendation accuracy were compared among the proposed algorithm, UserCF, TCNCF, PTCF and TimesSVD++ algorithm in different data sets. The experimental results show that the improved algorithm can reduce the Root Mean Square Error (RMSE) of the prediction score, and it is better than all the compared algorithms on the accuracy of TopN recommendation.
Keywords:collaborative filtering   personalized recommendation   user interest   Euclidean distance   chronergy
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号