首页 | 本学科首页   官方微博 | 高级检索  
     

基于负载不确定性的虚拟机整合方法
引用本文:李双俐,李志华,喻新荣,闫成雨. 基于负载不确定性的虚拟机整合方法[J]. 计算机应用, 2018, 38(6): 1658-1664. DOI: 10.11772/j.issn.1001-9081.2017112741
作者姓名:李双俐  李志华  喻新荣  闫成雨
作者单位:1. 江南大学 物联网工程学院, 江苏 无锡 214122;2. 物联网应用技术教育部工程研究中心(江南大学), 江苏 无锡 214122
基金项目:江苏省科技厅产学研联合创新基金资助项目(BY2013015-23)。
摘    要:物理主机工作负载的不确定性容易造成物理主机过载和资源利用率低,从而影响数据中心的能源消耗和服务质量。针对该问题,通过分析物理主机的工作负载记录与虚拟机资源请求的历史数据,提出了基于负载不确定性的虚拟机整合(WU-VMC)方法。为了稳定云数据中心各主机的工作负载,该方法首先利用虚拟机的资源请求拟合物理主机工作负载,并利用梯度下降方法计算虚拟机与物理主机的虚拟机匹配度;然后,利用匹配度进行虚拟机整合,从而解决负载不确定造成的能耗增加和服务质量下降等问题。仿真实验结果表明,WU-VMC方法降低了数据中心的能源消耗,减少了虚拟机迁移次数,提高了数据中心的资源利用率及服务质量。

关 键 词:云计算  数据中心  虚拟机整合  稳定负载  梯度下降  
收稿时间:2017-11-20
修稿时间:2018-01-10

Workload uncertainty-based virtual machine consolidation method
LI Shuangli,LI Zhihua,YU Xinrong,YAN Chengyu. Workload uncertainty-based virtual machine consolidation method[J]. Journal of Computer Applications, 2018, 38(6): 1658-1664. DOI: 10.11772/j.issn.1001-9081.2017112741
Authors:LI Shuangli  LI Zhihua  YU Xinrong  YAN Chengyu
Affiliation:1. School of Internet of Things Engineering, Jiangnan University, Wuxi Jiangsu 214122, China;2. Engineering Research Center of IoT Technology Application Ministry of Education(Jiangnan University), Wuxi Jiangsu 214122, China
Abstract:The uncertainty of workload in physical hosts easily leads to high overloaded risk and low resource utilization in physical hosts, which will further affect the energy consumption and service quality of data center. In order to solve this problem, a Workload Uncertainty-based Virtual Machine Consolidation (WU-VMC) method was proposed by analyzing the workload records of physical hosts and the historical data of virtual machine resource request. In order to stabilize the workload of each host in the cloud data center, firstly, the workloads of physical hosts were fitted according to resource requests of virtual machines, and the virtual machine matching degree between virtual machines and physical hosts was computed by using gradient descent method. Then, the virtual machines were integrated by using the matching degree to solve the problems such as increased energy consumption and decreased service quality which were caused by uncertain load. The simulation experimental results show that the proposed WU-VMC method can decrease energy consumption and virtual machine migration times of data center, improving the resource utilization and service quality of data center.
Keywords:cloud computing   data center   virtual machine consolidation   stabilized workload   gradient descent
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号