首页 | 本学科首页   官方微博 | 高级检索  
     

基于目标预测的扩展目标量测集划分算法
引用本文:王文慧,李鹏,胡韵迪. 基于目标预测的扩展目标量测集划分算法[J]. 计算机工程与应用, 2020, 56(8): 143-148. DOI: 10.3778/j.issn.1002-8331.1901-0020
作者姓名:王文慧  李鹏  胡韵迪
作者单位:1.江苏理工学院 艺术设计学院,江苏 常州 2130012.江苏理工学院 计算机工程学院,江苏 常州 213001
摘    要:扩展目标高斯混合概率假设密度(Extended Target Gaussian Mixture Probability Hypothesis Density,ET-GM-PHD)跟踪算法是扩展目标跟踪领域内最为重要的跟踪算法之一。然而当多个目标邻近时,该算法的状态估计精度降低,这是由于距离-Kmeans++(Distance Partitioning-Kmeans++,DP-Kmeans++)量测集划分算法无法输出正确的结果所导致。为解决该问题,提出了改进的DP-Kmeans++量测集划分算法,利用目标预测信息来分割量测集,从而提高了划分精度。仿真结果表明,当目标邻近时,使用提出划分算法使ET-GM-PHD跟踪算法的OSPA误差距离减小。

关 键 词:目标跟踪  扩展目标  量测集划分  密度分析  概率假设密度(PHD)  

Measurement Set Partitioning Algorithm for Extended Target Based on Target Prediction
WANG Wenhui,LI Peng,HU Yundi. Measurement Set Partitioning Algorithm for Extended Target Based on Target Prediction[J]. Computer Engineering and Applications, 2020, 56(8): 143-148. DOI: 10.3778/j.issn.1002-8331.1901-0020
Authors:WANG Wenhui  LI Peng  HU Yundi
Affiliation:1.College of Art and Design, Jiangsu University of Technology, Changzhou, Jiangsu 213001, China2.School of Computer Engineering, Jiangsu University of Technology, Changzhou, Jiangsu 213001, China
Abstract:Extended Target Gaussian Mixture Probability Hypothesis Density(ET-GM-PHD)filter has demonstrated as a promising approach in extended target tracking.However,when multiple targets are closely spaced to each other,state estimation accuracy of the algorithm decreases,which is due to the inability of the Distance Partitioning-Kmeans+(DPKmeans++)measurement set partitioning algorithm to output the correct results.To solve this problem,an improved DPKmeans++measurement set partitioning algorithm is proposed,which uses Target Prediction(TP)information to set partition measurement,thus the partitioning accuracy will be improved.Simulation results show that,the proposed partitioning algorithm leads to lower OSPA values of the ET-GM-PHD filter,when targets are closely spaced.
Keywords:target tracking  extended target  measurement set partitioning  density analysis  Probability Hypothesis Density(PHD)
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号