首页 | 本学科首页   官方微博 | 高级检索  
     

交互式检索的用户模拟器研究综述
引用本文:刘阳,林民,李艳玲. 交互式检索的用户模拟器研究综述[J]. 计算机工程与应用, 2020, 56(10): 1-9. DOI: 10.3778/j.issn.1002-8331.2001-0320
作者姓名:刘阳  林民  李艳玲
作者单位:内蒙古师范大学 计算机科学技术学院,呼和浩特 010022
基金项目:内蒙古自治区科技计划项目;内蒙古师范大学研究生创新基金;内蒙古自然科学基金;内蒙古民委蒙古文信息化专项扶持子项目;国家自然科学基金;内蒙古自治区"草原英才"工程青年创新创业人才项目
摘    要:随着检索技术的发展,交互式检索在信息检索领域中变得尤为重要。交互式检索在传统检索模式下增加了捕捉用户细粒度行为的功能,以便通过用户模拟器提升检索引擎性能。基于规则的用户模拟器缺乏个性化用户特征,适应性较差。基于模型的用户模拟器能够学习到更多的用户个性化行为特征,可以有效提升交互式检索引擎的性能。阐述了用户模拟器与检索引擎的交互过程,对基于规则的用户模拟器和基于模型的用户模拟器的构建方法以及近年来用户模拟器的评价方法进行了归纳总结,并重点介绍了基于模型的用户模拟器。最后对比了面向交互式检索的用户模拟器和传统的用户模拟器的差异,并以交互式学位论文检索场景为例,通过此检索场景对用户模拟器的应用进行了展望。

关 键 词:用户模拟器  交互式检索  强化学习  人工智能  用户个性化特征  

Review of User Simulators for Interactive Retrieval
LIU Yang,LIN Min,LI Yanling. Review of User Simulators for Interactive Retrieval[J]. Computer Engineering and Applications, 2020, 56(10): 1-9. DOI: 10.3778/j.issn.1002-8331.2001-0320
Authors:LIU Yang  LIN Min  LI Yanling
Affiliation:College of Computer Science and Technology, Inner Mongolia Normal University, Hohhot 010022, China
Abstract:With the development of retrieval technology, interactive retrieval becomes more and more important in the field of information retrieval. Interactive retrieval adds the ability to capture the fine-grained behavior of users in the traditional retrieval mode in order to improve the performance of the retrieval engine through the user simulator. Rule-based user simulators lack of personalized user features and cannot learn new behavior, poor adaptability. Model-based user simulators can learn more user personalized behavior characteristics, which can effectively improve the performance of interactive search engine. This paper describes the interactive process of user simulator and retrieval engine, summarizes the construction methods of rule-based user simulator and model-based user simulator and the evaluation methods of user simulator in recent years, and focuses on the introduction of model-based user simulator. Finally, the paper compares the differences between the user simulator for interactive retrieval and the traditional user simulator, and takes the interactive dissertation retrieval scenario as an example to forecast the application of the user simulator.
Keywords:user simulator  interactive retrieval  reinforcement learning  artificial intelligence  personalized characteristics of users  
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号