首页 | 本学科首页   官方微博 | 高级检索  
     

基于Mask R-CNN改进的遥感图像舰船检测
引用本文:顾振辉,姜文刚. 基于Mask R-CNN改进的遥感图像舰船检测[J]. 计算机工程与应用, 2020, 56(8): 171-176. DOI: 10.3778/j.issn.1002-8331.1907-0064
作者姓名:顾振辉  姜文刚
作者单位:江苏科技大学 电子信息学院,江苏 镇江 212003
摘    要:遥感图像中舰船朝向不确定性,舰船种类的多样性以及和其他海上及港口物体之间的相似性,使舰船检测的性能下降严重。针对这一问题,使用一种简单且有效的方法来训练有旋转不变性和Fisher判别的Mask R-CNN舰船检测模型,通过优化模型的目标函数以提高舰船检测性能,在保持原有检测模型结构不变的基础上引入两个正则化器,第一个正则化器加强训练样本旋转之前和之后的特征联系,第二个正则化器限制卷积神经网络有小的类内散度和大的类间散度。实验中,在Kaggle遥感图像船只检测数据集上验证了所提出的方法提高了检测遥感图像中舰船目标的性能。

关 键 词:遥感图像  MaskR-CNN  舰船检测  旋转不变  Fisher判别  

Improved Remote Sensing Image Ship Detection Based on Mask R-CNN
GU Zhenhui,JIANG Wengang. Improved Remote Sensing Image Ship Detection Based on Mask R-CNN[J]. Computer Engineering and Applications, 2020, 56(8): 171-176. DOI: 10.3778/j.issn.1002-8331.1907-0064
Authors:GU Zhenhui  JIANG Wengang
Affiliation:School of Electronic Information, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
Abstract:The uncertainty of ship orientation in remote sensing images,the diversity of ship types and the similarities with other sea and port objects have caused the performance of ship detection to deteriorate seriously.Aiming at this problem,a simple and effective method is used to train the Mask R-CNN ship detection model with rotation invariance and Fisher discriminant.By optimizing the model’s objective function to improve ship detection performance,the original detection is maintained.Based on the invariant model structure,two regularizers are introduced.The first regularizer enhances the feature association before and after training sample rotation.The second regularizer limits the convolutional neural network to have small intra-class divergence and large inter-class divergence.Experimental results on Kaggle remote sensing image ship detection dataset verify the proposed method,which improves performance of detecting ship targets in remote sensing images.
Keywords:remote sensing image  Mask R-CNN  ship inspection  rotation unchanged  Fisher discrimination
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号