首页 | 本学科首页   官方微博 | 高级检索  
     

一种利用UKF的高速公路实时交通状态估计方法
引用本文:程松,陈光梦. 一种利用UKF的高速公路实时交通状态估计方法[J]. 计算机工程与应用, 2008, 44(8): 226-229. DOI: 10.3778/j.issn.1002-8331.2008.08.067
作者姓名:程松  陈光梦
作者单位:复旦大学,电子工程系,上海,200433;复旦大学,电子工程系,上海,200433
摘    要:把无轨迹卡尔曼滤波器(UKF)和宏观随机交通流模型结合在一起,可以实现对高速公路交通状态的实时估计。高速公路被看作是由等距离的路段首尾相接而成的系统,每个路段中交通变量的更新不光与其自身有关,还受到相邻路段的影响。交通传感器通常设置在路段的交界处,而且数量远少于所需估计的交通状态。采用压缩状态空间的形式,将模型参数也作为交通状态而非常量进行估计。仿真结果表明UKF方法能够有效地估计和跟踪交通状态的变化,并且与扩展卡尔曼滤波方法相比具有更高的精确度。

关 键 词:非线性估计  UKF  宏观随机交通流模型  扩展卡尔曼滤波
文章编号:1002-8331(2008)08-0226-04
收稿时间:2007-07-09
修稿时间:2007-10-15

Real-time motorway traffic state estimation based on unscented Kalman filtering
CHENG Song,CHEN Guang-meng. Real-time motorway traffic state estimation based on unscented Kalman filtering[J]. Computer Engineering and Applications, 2008, 44(8): 226-229. DOI: 10.3778/j.issn.1002-8331.2008.08.067
Authors:CHENG Song  CHEN Guang-meng
Affiliation:Department of Electronic Engineering,Fudan University,Shanghai 200433,China
Abstract:An approach to the real-time estimation of the traffic state in motorway is developed based on unscented Kalman filtering and macroscopic stochastic traffic flow model.The motorway stretch is divided into several segments one by one with the same length and the evolution of the traffic variables are influenced by the states of the neighbor segments.Electronic sensors are usually placed between some segments and the measurements are less than states estimated.This paper uses the compact state-space method and treats the model parameters as the traffic states.Simulation results prove that unscented Kalman filter can predict and track the state efficiently.It is also more accurate than EKF method.
Keywords:nonlinear estimation  unscented Kalman filtering  macroscopic stochastic traffic flow model  extended Kalman filter
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号