首页 | 本学科首页   官方微博 | 高级检索  
     

基于高斯混合概率假设密度的运动参数估计组合平滑滤波算法
引用本文:黄庆东, 李晓瑞, 曹艺苑, 刘青. 基于高斯混合概率假设密度的运动参数估计组合平滑滤波算法[J]. 电子与信息学报, 2022, 44(7): 2488-2495. doi: 10.11999/JEIT210439
作者姓名:黄庆东  李晓瑞  曹艺苑  刘青
作者单位:1.西安邮电大学通信与信息工程学院 西安 710121;2.西安理工大学自动化与信息工程学院 西安 710048
基金项目:国防科研试验信息安全实验室基础研究项目(2018XXAQ09)
摘    要:针对高斯混合概率假设密度(GM-PHD)滤波器在目标速度未知或不准确时,目标状态估计性能较差,该文提出一种基于GM-PHD的运动参数估计组合平滑滤波算法。该算法通过目标状态提取速度信息,经过中值平滑和线性平滑组合处理提升速度估计准确性,然后将速度反馈给GM-PHD滤波器的状态转移方程,提高状态预测精度。仿真结果表明,目标速度未知或不准确时,所提算法能够明显改善GM-PHD滤波器状态估计性能。

关 键 词:目标跟踪   高斯混合概率假设密度滤波   参数估计   组合平滑
收稿时间:2021-09-15
修稿时间:2021-09-09

Motion Parameter Estimation Combined Smoothing Filter Algorithm Based on Gaussian Mixture Probability Hypothesis Density
HUANG Qingdong, LI Xiaorui, CAO Yiyuan, LIU Qing. Motion Parameter Estimation Combined Smoothing Filter Algorithm Based on Gaussian Mixture Probability Hypothesis Density[J]. Journal of Electronics & Information Technology, 2022, 44(7): 2488-2495. doi: 10.11999/JEIT210439
Authors:HUANG Qingdong  LI Xiaorui  CAO Yiyuan  LIU Qing
Affiliation:1. School of Communication and Information Engineering, Xi’an University of Posts and Telecommunications, Xi’an 710121, China;2. School of Automation and Information Engineering, Xi’an University of Technology, Xi’an 710048, China
Abstract:Considering poor performance of target state estimation for Gaussian Mixture Probability Hypothesis Density(GM-PHD) filter when the target velocity is unknown or inaccurate, a combined smoothing filtering algorithm for motion parameter estimation based on GM-PHD is proposed. The velocity information is extracted from the target state, and the accuracy of velocity estimation is improved through the combined processing of median smoothing and linear smoothing. Then, the velocity is fed back to the state transition equation of the GM-PHD filter to improve the accuracy of state prediction. Simulation results show that the proposed algorithm can significantly improve the state estimation performance of GM-PHD filter when the target velocity is unknown or inaccurate.
Keywords:Target tracking  Gaussian Mixture Probability Hypothesis Density(GM-PHD) filtering  Parameter estimation  Combination of smooth
点击此处可从《电子与信息学报》浏览原始摘要信息
点击此处可从《电子与信息学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号