首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Characterization of particulate matter sources in an urban environment   总被引:4,自引:0,他引:4  
Daily time series measurements of elements or compounds are widely used to apportion the contribution of specific sources of particulate matter concentration in the atmosphere. We present results obtained for the urban area of Genoa (Italy) based on several hundred of PM10, PM2.5 and PM1 daily samples collected in sites with different geo-morphological and urbanization characteristics. Elemental concentrations of Na to Pb were obtained through Energy Dispersive X-Ray Fluorescence (ED-XRF), and the contributions of specific sources of particulate matter (PM) concentration were apportioned through Positive Matrix Factorization (PMF). By sampling at different sites we were able to obtain, in each PM fraction, the average and stable values for the tracers of specific sources, in particular traffic (Cu, Zn, Pb) and heavy oil combustion (V, Ni). We could also identify and quote the contamination of anthropogenic PM in "natural" sources (sea, soil dust). Sampling at several sites in the same urban area allowed us to resolve local characteristics as well as to quote average values.  相似文献   

2.
杨增荣 《山西建筑》2015,(9):195-197
对太原市2009年大气中可吸入颗粒物浓度进行了实时监测,得到月平均浓度值,并结合当年各月的平均风速和降水量进行分析,结果表明,采暖期内由供热锅炉以及各种采暖设施排出的大量废气污染物是引起太原市可吸入颗粒物浓度月均值变化的主要影响因素,另一方面,风速的增加会加速大气中可吸入颗粒物的扩散,而当风速较弱时,一定量的降水会对大气中可吸入颗粒物起到冲刷作用。  相似文献   

3.
ARPA Emilia Romagna created, in 1997, a regional network for the continuous monitoring of the mutagenicity of PM(2.5) by short-term mutagenicity bioassays to guarantee a constant surveillance on the entire regional territory. The continuous monitoring of the PM mutagenicity provides essential information for a better understanding of the impact of air pollution on the health of the population, and allows one to better judge the efficiency of national and local efforts for urban air quality improvement (use of "green" petrol and ecodiesel, days during which traffic is prohibited, etc.). This article presents the results relating to the Network's activity between September 2000 and December 2002, on PM(2.5) fraction. The organic extracts of PM(2.5) were tested for mutagenicity using Salmonella tester strains TA98 and TA100 with and without metabolic activation (S9). The data obtained on the genotoxicity of air particulate extracts have revealed a constant presence of mutagenic substances adsorbed on particulate matter-with a prevalence of direct-acting mutagens than of promutagens-in a typical seasonal trend featuring higher levels in autumn-winter and lower in warmer periods of the year. In this work the evolution of PM(2.5) mutagenicity was compared with the particles, carbon monoxide (CO) and nitrogen dioxide (NO(2)) concentrations (monthly average); these comparisons revealed a quite good level of agreement on a local basis.  相似文献   

4.
In November 1985 a research program started, with the aim to evaluate seasonal variations in the concentrations of organic and inorganic pollutants in the atmosphere of Genoa. The program provided for the collection of samples of airborne particulate in five different areas with distinct urban characteristics. First results for chromium, lead, and thallium concentrations in an industrial and in an urban area are reported. Lead showed the highest concentration at both locations (geometric mean: 1.037 and 0.476 microgram/m3, respectively) and appeared to be little affected by seasonal variation. Private traffic was confirmed as the main source of this pollutant. Chromium and thallium geometric mean concentrations were 0.006 and 0.014 microgram/m3 in site A and 0.017 and 0.015 microgram/m3 in site B, respectively. In the urban location a good negative linear correlation was found between chromium and thallium concentration and mean ambient temperature; the domestic heating plants were suspected as important emission sources of these two compounds.  相似文献   

5.
PM(10) source characterization at urban and highway roadside locations   总被引:1,自引:0,他引:1  
Levels of PM(10) were measured at two different roadside locations in the Stockholm region in Sweden, one highway south of Stockholm and one urban street canyon in the center of the city. PM(10) samples were taken during six separate campaigns over one full year, and analyzed for 29 metals, in order to help characterize sources of PM(10). Five contributing factors were identified by multivariate receptor modeling using positive matrix factorization. Factors were classified, based on their seasonal variation and published data on metal composition of different sources, as: 1) resuspension; 2) vehicle derived; 3) road salt; 4) regional combustion and 5) long-range transport. Resuspension and long-range transport were shown to be important contributors to the PM(10) levels at both sites. In fact, long-range transport was the main contributor to the PM(10) levels at the highway roadside. The vehicle source was only of major importance at the urban roadside, where it frequently contributed between 10 and 20 microg m(-3). Brake wear was an important component in the vehicle source. Vehicle exhaust was not detected as a separate source and was not identified as a major source for PM(10). To our knowledge, this is the first study identifying brake wear as a major source of PM(10) during urban driving.  相似文献   

6.
为探究室外细颗粒物(PM2.5)通过围护结构缝隙进入建筑室内的原因及影响因素,并以"源头控制"为思路提出被动控制措施,通过实测手段分析了室内和室外PM2.5的相关性及外窗气密性对室外PM2.5的阻隔作用;在介绍PM2.5围护结构缝隙穿透模型的基础上,分析了室外PM2.5进入室内的影响因素;根据实测和理论分析结果提出了被动控制措施。结果表明:室内外PM2.5浓度具有相关性,气密性好的外窗对室外PM2.5的阻隔作用强;颗粒物穿透围护结构的过程受换气次数影响。因此,对于住宅或无正压保证的建筑,应采取较高气密性外窗、保证外窗密封胶条产品质量和安装质量、加强墙体预留孔口的密封以及定期维护等被动式控制措施,以减少室外PM2.5向室内的穿透。  相似文献   

7.
This study conducted an atmospheric aerosol sampling to measure the PM10 (particles < 10 microns in aerodynamic diameter) and PM2.5 (particles < 2.5 microns in aerodynamic diameter) mass concentrations from October 1996 to June 1997 in northern (Taipei), central (Taichung) and southern (Kaohsiung), the three largest cities of Taiwan. Seventy-eight samples were obtained to measure the mass concentrations of PM10 and PM2.5 from nine sampling sites. According to those results, the PM10 mass concentrations in Taipei, Taichung and Kaohsiung were 42.19, 60.99 and 77.10 micrograms/m3, respectively. The corresponding PM2.5 mass concentrations were 23.09, 39.97 and 48.47 micrograms/m3, respectively. The PM2.5 fraction accounted for 61-67% of the PM10 mass in central and southern Taiwan, but was lower (54-59%) in northern Taiwan. Some samples in which the PM2.5 fraction was overwhelmingly dominant could reach as high as 80-95% of the PM10 mass. In addition, the PM2.5, PM10 levels and PM2.5/PM10-2.5 (particles with aerodynamic diameters ranging from 2.5 to 10 microns) ratios in metropolitan Taiwan significantly fluctuated from site-to-site and over time. Moreover, ambient daily PM2.5 and PM10-2.5 mass concentrations did not correlate well with each other at most of the sampling sites, indicated that they originated from different kinds of sources and emitted variedly over time.  相似文献   

8.
Lim JM  Jeong JH  Lee JH  Moon JH  Chung YS  Kim KH 《Indoor air》2011,21(2):145-155
In this study, elemental composition of PM2.5 and the status of indoor/outdoor pollution were investigated in a commercial building near a roadside area in Daejeon, Korea. A total of 60 parallel PM2.5 samples were collected both on the roof (outdoor) and in an indoor office of a building near a highly congested road during the spring and fall of 2008. The concentrations of 23 elements were analysed from these PM2.5 samples using instrumental neutron activation analysis. PM2.5 levels in indoor environment (47.6 ± 16.5 μg/m(3)) were noticeably higher than the outdoor levels (37.7 ± 17.2 μg/m(3)) with the I/O concentration ratio of 1.37 ± 0.33 [correlation coefficient (r) = 0.89, P < 0.001]. Principal component analysis results coincidently showed the predominance of sources such as soil dust, traffic, oil/coal combustion and road dust for both indoor and outdoor microenvironments. An isolated source in the indoor environment was assigned to environmental tobacco smoke (ETS) with high factor loading of Ce, Cl, I, K, La and Zn. The overall results of our study indicate that the sources of indoor constituents were strongly dependent on outdoor processes except for the ones affected by independent sources such as ETS. PRACTICAL IMPLICATIONS: An improved understanding of the factors affecting the indoor PM2.5 concentration levels can lead to the development of an efficient management strategy to control health risks from exposure to indoor PM2.5 and related toxic components. A comparison of our comprehensive data sets indicated that most indoor PM2.5 and associated elemental species were strongly enriched by indoor source activities along with infiltration of ambient outdoor air for a naturally ventilated building.  相似文献   

9.
To investigate the potential role of ammonia in ion chemistry of PM2.5 aerosol, measurements of PM2.5 (particulate matter having aerodynamic diameter < 2.5 µm) along with its ionic speciation and gaseous pollutants (sulfur dioxide (SO2), nitrogen oxides (NOx), ammonia (NH3) and nitric acid (HNO3)) were undertaken in two seasons (summer and winter) of 2007-2008 at four sampling sites in Kanpur, an urban-industrial city in the Ganga basin, India. Mean concentrations of water-soluble ions were observed in the following order (i) summer: SO42− (26.3 µg m− 3) > NO3 (16.8) > NH4+ (15.1) > Ca2+ (4.1) > Na+ (2.4) > K+ (2.1 µg m− 3) and (ii) winter: SO42− (28.9 µg m− 3) > NO3 (23.0) > NH4+ (16.4) > Ca2+(3.4) > K+(3.3) > Na+ (3.2 µg m− 3). The mean molar ratio of NH4+ to SO42− was 2.8 ± 0.6 (mostly >2), indicated abundance of NH3 to neutralize H2SO4. The excess of NH4+ was inferred to be associated with NO3 and Cl. Higher sulfur conversion ratio (Fs: 58%) than nitrogen conversion ratio (Fn: 39%) indicated that SO42− was the preferred secondary species to NO3. The charge balance for the ion chemistry of PM2.5 revealed that compounds formed from ammonia as precursor are (NH4)2SO4, NH4NO3 and NH4Cl. This study conclusively established that while there are higher contributions of NH4+, SO42− to PM2.5 in summer but for nitrates (in particulate phase), it is the winter season, which is critical because of low temperatures that drives the reaction between ammonia and HNO3 in forward direction for enhanced nitrate formation. In summary, inorganic secondary aerosol formation accounted for 30% mass of PM2.5 and any particulate control strategy should include optimal control of primary precursor gases including ammonia.  相似文献   

10.
Y. Yoda  K. Tamura  M. Shima 《Indoor air》2017,27(5):955-964
Endotoxins are an important biological component of particulate matter and have been associated with adverse effects on human health. There have been some recent studies on airborne endotoxin concentrations. We collected fine (PM2.5) and coarse (PM10‐2.5) particulate matter twice on weekdays and weekends each for 48 hour, inside and outside 55 homes in an urban city in Japan. Endotoxin concentrations in both fractions were measured using the kinetic Limulus Amebocyte Lysate assay. The relationships between endotoxin concentrations and household characteristics were evaluated for each fraction. Both indoor and outdoor endotoxin concentrations were higher in PM2.5 than in PM10‐2.5. In both PM2.5 and PM10‐2.5, indoor endotoxin concentrations were higher than outdoor concentrations, and the indoor endotoxin concentrations significantly correlated with outdoor concentrations in each fraction (R2=0.458 and 0.198, respectively). Indoor endotoxin concentrations in PM2.5 were significantly higher in homes with tatami or carpet flooring and in homes with pets, and lower in homes that used air purifiers. Indoor endotoxin concentrations in PM10‐2.5 were significantly higher in homes with two or more children and homes with tatami or carpet flooring. These results showed that the indoor endotoxin concentrations were associated with the household characteristics in addition to outdoor endotoxin concentrations.  相似文献   

11.
Atmospheric fate of phthalate esters in an urban area (Paris-France)   总被引:7,自引:0,他引:7  
The atmospheric fate of six phthalate esters was investigated in the urban area of Paris (France). Total atmospheric levels (ng m-3) were as follows: DMP, 0.5; DEP, 10.7; DnBP, 22.2; BBP, 4.6; DEHP, 18.9; and DnOP, 0.5 ng m-3, showing a predominance of DnBP and next, DEHP. They are mainly present in the vapour phase, from 93.8% to 64.9%, particularly for the esters with alkyl chain length of less than six C. An inverse correlation was found between the vapour phase concentrations and the molecular weight and also a direct correlation between the vapour phase concentrations and the log [vapour pressure] of the compounds. Seasonal variations were displayed by principal component analysis (PCA), due to significant correlation between phthalate concentrations and air temperature. Rain water concentrations (ng L-1) were as follows: DMP, 116; DEP, 333; DnBP, 592; BBP, 81; DEHP, 423; and DnOP, 10. PCA analysis showed a seasonal variation of these concentrations correlated to the air temperature. The experimental water/air scavenging ratio was calculated and was in accordance with the theoretical one obtained from the vapour pressure and the Henry's law constant for each phthalate ester. The global trend was a decrease of the washout coefficient in relation with the rise of alkyl chain length. Yearly balances for rainwater and bulk deposition allowed the estimation of dry deposits that represented about half of total. Our findings highlight the major part played by particles in atmospheric deposition processes.  相似文献   

12.
Low birthweight contributes to as many as 60% of all neonatal deaths; exposure during pregnancy to household air pollution has been implicated as a risk factor. Between 2011 and 2013, we measured personal exposures to carbon monoxide (CO) and fine particulate matter (PM2.5) in 239 pregnant women in Dar es Salaam, Tanzania. CO and PM2.5 exposures during pregnancy were moderately high (geometric means 2.0 ppm and 40.5 μg/m3); 87% of PM2.5 measurements exceeded WHO air quality guidelines. Median and high (75th centile) CO exposures were increased for those cooking with charcoal and kerosene versus kerosene alone in quantile regression. High PM2.5 exposures were increased with charcoal use. Outdoor cooking reduced median PM2.5 exposures. For PM2.5, we observed a 0.15 kg reduction in birthweight per interquartile increase in exposure (23.0 μg/m3) in multivariable linear regression; this finding was of borderline statistical significance (95% confidence interval 0.30, 0.00 kg; P = 0.05). PM2.5 was not significantly associated with birth length or head circumference nor were CO exposures associated with newborn anthropometrics. Our findings contribute to the evidence that exposure to household air pollution, and specifically fine particulate matter, may adversely affect birthweight.  相似文献   

13.
A new method using several different chemical scenarios is developed to predict chemical composition of fine (PM2.5) and total (PM10) aerosol. This method improves the accuracy of predicted PM concentrations. The Mesoscale Model version 5 (MM5) and a 3-dimensional Eulerian chemical model (CAMx4.2) are used to predict PM2.5 and PM10 concentrations using gridded input emissions (from the "Total" group) over a 48-72 h time period for Christchurch (New Zealand) for winter 2005. The aerosol concentrations are obtained for four different chemical compositions (chemical scenarios) of the input aerosol emissions. PM2.5 chemical compositions are based on previous Christchurch winter studies and from observations in other countries with similar winter pollution problems, and used in CAMx4.2 to model seven winter 2005 heavy pollution episodes. The error between observed and modelled PM2.5 concentrations is based on predictions of fine aerosol that are derived from linear regression with PM10. It is used to find the minimum difference between modelled and observed PM2.5 for an observation site located in the Christchurch residential area. Combination of the chemical scenarios with analysis of the minimum error is used to create a new complex chemical scenario. The new complex scenario is used to re-calculate all pollution episodes to obtain new values of PM with minimum error compared with observed aerosol concentrations. Mean Absolute Error of the calculated PM2.5 (for all pollution episodes) decreased from 21-24 microg m(-3) to 14-16 microg m(-3) compared with observations. The chemical composition of the modelled PM2.5 is also discussed.  相似文献   

14.
A chemical characterization was carried out for PM(2.5) and PM(2.5-10) samples collected in a suburban area and the concentrations of 12 elements were determined in 8 size segregated fractions using a Berner Impactor. Two main objectives were proposed in this work: 1) to test for closure among chemical and gravimetric measurements of PM(2.5) and PM(2.5-10) and 2) evaluate the performance of Multilinear Regression Analysis (MLRA) and Mass Balance Analysis (MBA) in the determination of source contribution to Particulate Matter (PM) concentrations. The fraction unaccounted for by chemical analysis comprised on average 17% and 34% of gravimetric PM(2.5) and PM(2.5-10), respectively. The lack of closure in PM(2.5) and PM(2.5-10) mass (i.e., constituent concentrations not adding up to gravimetrically measured) could partly result from the presence of water associated with particles and errors in the estimation of unmeasured species. MLRA and MBA showed very similar results for the temporal variation of the source contributions. However, quantitatively important discrepancies could be observed, principally due to the lack of mass closure in PM(2.5) and PM(2.5-10). Both methods indicated that the major PM(2.5) aerosol mass contributors included secondary aerosol and vehicle exhaust. In the coarse fraction, marine and mineral aerosol contributions were predominant.  相似文献   

15.
Environmental safety issues and ventilation problems caused by the construction of urban tunnel have increasingly been attracting people’s attention. Previous studies in China have mainly focused on vehicle emissions and ventilation control technologies in road tunnels, resulting in a research gap on urban tunnel ventilation engineering design. Therefore, a detailed monitoring investigation was conducted from May 22 to June 2, 2013 in Changsha Yingpan Road Tunnel, China. The study aim was to measure the traffic characteristics, air velocity and the carbon monoxide (CO), nitrogen oxides (NOx) and fine particulate matter (PM2.5) concentrations in this tunnel, which has two lanes per bore and multiple ramps. Measurement results show that during the workday morning peak, the maximum traffic flow was 1560 passenger-car-unit/h per lane with vehicle speed around 33.6 km/h in the eastbound tunnel, the average air velocity was 3.07 m/s, and the proportion of the light-duty vehicles (LDV) was 97.3%. Under the traffic force (not open fan), the CO and NO average concentrations at the main tunnel outlet were 20.3 ppm and 1.65 ppm, respectively. The gas pollutant concentrations are effectively controlled within the multiple-ramps tunnel and the design air volume flow is noticeably reduced. The traffic air flow was found to provide 32.5% of the required air volume to dilute NOx in blocked traffic condition (vehicle speed of 10 km/h). In addition, the PM2.5 concentration is mainly affected by the value of background outside the tunnel. The result can provide a quantitative assessment method to support pollutant concentration control and contribution of requested air volume by traffic flow in urban complex structure tunnel.  相似文献   

16.
We conducted a randomized trial of portable HEPA air cleaners in the homes of children age 6–12 years with asthma in the Yakima Valley, Washington. All families received asthma education while intervention families also received two HEPA cleaners (child's bedroom, living room). We collected 14-day integrated samples of endotoxin in settled dust and PM10 and PM10-2.5 in the air of the children's bedrooms at baseline and one-year follow-up, and used linear regression to compare follow-up levels, adjusting for baseline. Seventy-one families (36 HEPA, 35 control) completed the study. Baseline geometric mean (GSD) endotoxin loadings were 1565 (6.3) EU/m2 and 2110 (4.9) EU/m2, respectively, in HEPA vs. control homes while PM10 and PM10-2.5 were 22.5 (1.9) μg/m3 and 9.5 (2.9) μg/m3, respectively, in HEPA homes, and 19.8 (1.8) μg/m3 and 7.7 (2.0) μg/m3, respectively, in control homes. At follow-up, HEPA families had 46% lower (95% CI, 31%–57%) PM10 on average than control families, consistent with prior studies. In the best-fit heterogeneous slopes model, HEPA families had 49% (95% CI, 6%–110%) and 89% lower (95% CI, 28%–177%) PM10-2.5 at follow-up, respectively, at 50th and 75th percentile baseline concentrations. Endotoxin loadings did not differ significantly at follow-up (4% lower, HEPA homes; 95% CI, −87% to 50%).  相似文献   

17.
In this paper a source apportionment of particulate matter pollution in the urban area of Milan (Italy) is given. Results of PM10 and PM2.5 mass and elemental concentrations from a 1-year monitoring campaign are presented. Mean annual and daily PM10 levels are compared with the limits of the EU Air Quality Directive EC/30/1999 and the results show that the limit values established would not be met in the urban area of Milan or the large surrounding area. Moreover, high levels of PM2.5 are registered and this fraction constitutes a high portion of the PM10 mass. In Milan the winter period is characterised by a high degree of air pollution due to a greater contribution of emissions and to adverse meteorological and thermodynamic conditions of the atmosphere. The application of multivariate techniques and receptor modelling (PCFA, APCFA) to the whole data-set led to the identification of the main emitting sources and to the source apportionment of PM10 and PM2.5 in Milan. The most important sources were identified as 'soil dust', 'traffic', 'industry' and 'secondary compounds' for PM10 and as 'soil dust', 'anthropogenic' and 'secondary compounds' for PM2.5, explaining the greatest part of the total variance (91% and 75%, respectively).  相似文献   

18.
The influence of Saharan dust on the air quality of Southern European big cities became a priority during the last decade. The present study reports results on PM10 monitored at an urban site at 14 m above ground level during an intense Saharan dust transport event. The elemental composition was determined by Energy Dispersive X-ray Fluorescence Spectrometry (EDXRF) for 12 elements: Si, Al, Fe, K, Ca, Mg, Ti, S, Ni, Cu, Zn and Mn. PM10 concentrations exceeded the EU limit (50 μg/m3) several times during the sampling period. Simultaneous maxima have been observed for the elements of crustal origin. The concentrations of all the elements presented a common maximum, corresponding to the date where the atmosphere was heavily charged with particulate matter permanently for an interval of about 10 h. Sulfur and heavy metal concentrations were also associated to local emissions. Mineral dust represented the largest fraction of PM10 reaching 79%. Seven days back trajectories have shown that the air masses arriving over Athens, originated from Western Sahara. Scanning Electron Microscopy coupled with Energy Dispersive X-ray analysis (SEM-EDX) revealed that particle agglomerates were abundant, most of them having sizes < 2 μm. Aluminosilicates were predominant in dust particles also rich in calcium which was distributed between calcite, dolomite, gypsum and Ca-Si particles. These results were consistent with the origin of the dust particles and the elemental composition results. Sulfur and heavy metals were associated to very fine particles < 1 μm.  相似文献   

19.
Indoor/outdoor measurements have been performed in the Oslo metropolitan area during summer and winter periods (2002-2003) at two different residential houses. The objective of the measurement study was to characterize, physically and chemically, the particulate matter (PM) and gaseous pollutants associated with actual human exposure in the selected places, and their indoor/outdoor relationship. In this paper, we focus on the PM measurements and examine the relationship between the indoor and outdoor PM concentrations taking into account the ventilation rate, indoor sources and meteorological conditions. The indoor/outdoor measurements indicate the important contribution of the outdoor air to the indoor air quality and the influence of specific indoor sources such as smoking and cooking to the concentration of PM inside houses. However, no specific correlation was found between the indoor/outdoor concentration ratio and the meteorological parameters. This study provides information on the physical characteristics and the relationship of indoor to outdoor concentration of particulate matter in residential houses. Moreover, the parameters that influence this relationship are discussed. The results presented here are specific to the sampled houses and conditions used and provide data on the actual human exposure characteristics which occur in the spatial and temporal scales of the present study.  相似文献   

20.
Suspended particulate matter (SPM) was collected seasonally for 1 yr at third- and fifth-order sites in a blackwater stream on the coastal plain in South Carolina. Fatty acids with carbon chain lengths from C(12)-C(32) were the most abundant component among the lipid classes examined with total concentrations varying from 8.5 to 60.2 microgL(-1). Unsaturated fatty acids predominated while significant concentrations of the even-chained saturated components C(24)-C(30) derived from cuticular plant waxes were also found. Concentrations of aliphatic alcohols, with carbon chain lengths between C(16) and C(30), ranged from 0.52 to 2.73 microgL(-1) and was dominated by the higher molecular weight compounds (C(22)-C(30)) derived primarily from cuticular plant waxes. Total hydrocarbon concentrations ranged from 0.35 to 5.66 microgL(-1) and showed no discernible trends with time or consistent difference between sites. The hydrocarbon assemblage observed indicates that these components are entirely of biogenic origin with no detectable anthropogenic contribution.The ratios of unsaturated to saturated fatty acids and cuticular to noncuticular fatty acids and alcohols at both stream locations indicate that the organic detritus associated with SPM collected during November and January is of more recent origin and less processed than that collected in the spring and summer months. Lipid concentrations at the third-order site generally had higher and more variable concentrations of the lipid classes compared with the fifth-order site. The ratio of saturated to unsaturated fatty acids was higher at the third-order site indicating that the organic fraction of SPM at this site was of more recent origin and less decomposed. The ratios of cuticular to noncuticular fatty acids and alcohols support this conclusion. These results indicate an export of particulate lipids of higher carbon resource quality from upstream to lower stream reaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号