首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new photopyroelectric methodology for thermal effusivity measurements in transparent liquids is presented. The new methodology involves the thermally thick limit of the pyroelectric signal in the standard front-surface configuration. A signal normalization procedure, which avoids the conventional requirement for transfer function determination, is implemented. The thermal effusivity of five liquids was measured by means of this technique, and very good agreement was found with corresponding values reported in the literature.  相似文献   

2.
The pulse hot strip method is a newly developed dynamic method to measure the thermal conductivity and thermal diffusivity of solids. It is based on monitoring the temperature response of a sample to a very short heat pulse liberated by a strip heat source. The instrument's uncertainty is estimated to be less than 3% for both quantities.  相似文献   

3.
The transient hot-wire method, incorporating a static magnetic field, has been developed to measure thermal conductivities of liquid mercury and gallium. Prior to the measurements, the effect of an alumina-coated hot wire on the measurements has been evaluated. Natural convection in the liquid metals has been effectively suppressed by the Lorentz force acting on the liquid metals in a static magnetic field. The thermal conductivities of liquid mercury and gallium have been determined to be 7.9 W.m −1.K −1 at 291 K and 24 W.m −1.K −1 at 302.9 K, respectively.Paper presented at the Seventeenth European Conference on Thermophysical Properties, September 5–8, 2005, Bratislava, Slovak Republic.  相似文献   

4.
We investigated the thermal effusivity of silver nanofluids using a microwave technique. During microwave irradiation, silver nanoparticles with a narrow particle size distribution were formed in water and in ethylene glycol, with a polyvinylpyrrolidone stabilizer. We designed and used a front-photopyroelectric technique that employed a metalized polyvinylidene difluoride (PVDF) pyroelectric sensor, with a thermally thick sensor and sample. Using this technique, we calculated the thermal effusivity of the silver nanofluids at a given frequency using the combination of the signal’s normalized amplitude–phase. The thermal effusivity of the nanofluids increased with the number of microwave irradiation cycles, which increased the nanoparticle concentration in the base fluids. A comparison with reported values illustrates the high accuracy obtained from the results of thermal diffusivity, the thermal effusivity of the PVDF sensor, and the thermal effusivity of ethylene glycol as a base fluid (differing by only 1.7 %, 0.5 %, and 2.3 %, respectively). Our method can therefore be used to study nanofluids with varying nanoparticle properties, such as concentration, size, and shape.  相似文献   

5.
A Quasi-Steady State Technique to Measure the Thermal Conductivity   总被引:3,自引:0,他引:3  
A new method is developed for the measurement of thermal conductivity. It combines characteristic advantages of steady-state and transient techniques but avoids major drawbacks of both these classes of methods. On the basis of a simple transient hot wire (THW) or transient hot-strip (THS) arrangement, a direct indicating thermal-conductivity meter is realized by adding only one temperature sensor. After a short settling time during which all transients die out, the instrument operates under quasi-steady state conditions. No guard heaters are required because outer boundaries are free to change with time. The instrument's uncertainty is provisionally estimated to be 3%.  相似文献   

6.
Contact transient methods, some of which are available as commercial forms, are now widely used worldwide for thermal properties measurements on broad ranges of materials used in physical, chemical, and medical applications. However, in many cases the claimed measurement uncertainty has not been substantiated while in others – especially for the multiproperty techniques – internal inconsistencies in measured and/or derived values are clearly apparent. Following recommendations of participants of two workshops held on the subject in Würzburg (1999) and Cambridge, Massachussetts (2001), NPL agreed to coordinate a task to develop a standard test-method for these techniques. This involved using inputs provided by a small group of individuals from organizations in several European countries and also taking note of comments from other interested parties via the internet during the course of the development. Details are provided on the resulting document, which takes the form of a generic standard containing appropriate details and related information common to all techniques. These sections include the scope, theory, summaries of method, basic apparatus and experiment, the influencing factors, specimen requirements, procedure, and recommended approach for analysis of the experiment and calculation of the results. In addition, there are six annexes, each of which contains additional information that applies to a specific technique. Finally, the document proposes a recommended approach for verification of a technique together with a list of appropriate reference materials having known values for one or more properties. The status of intercomparison studies will also be reported. Paper presented as the Fifteenth Symposium on Thermophysical Properties, June 22–27, 2003, Boulder.  相似文献   

7.
The present paper reports new measurements of the thermal conductivity of liquid tin and indium. The measurements have been performed at atmospheric pressure in a range of temperatures from 450 to 750 K using a new experimental method based on the principle of the transient hot wire technique. The particular version of the technique employed for molten metals has been shown to have an accuracy in the measurement of the thermal conductivity of molten metals of ±2%. Ultimately, it is intended that the technique operate in a wide range of temperatures, from ambient up to 1200 K, and work is in progress to increase the working temperature and to extend the range of measurements. The results are compared with experimental data reported in the literature by other authors and with predictions of the Wiedemann and Franz law.  相似文献   

8.
A transient hot-wire apparatus was used to measure the thermal conductivity of argon with both steady-state and transient methods. The effects of wire diameter, eccentricity of the wire in the cavity, axial conduction, and natural convection were accounted for in the analysis of the steady-state measurements. Based on measurements on argon, the relative uncertainty at the 95 % level of confidence of the new steady-state measurements is 2 % at low densities. Using the same hot wires, the relative uncertainty of the transient measurements is 1 % at the 95 % level of confidence. This is the first report of thermal conductivity measurements made by two different methods in the same apparatus. The steady-state method is shown to complement normal transient measurements at low densities, particularly for fluids where the thermophysical properties at low densities are not known with high accuracy.  相似文献   

9.
The theoretical principles are described of measuring the thermophysical properties of a liquid in a flow during a short pulse of heating a quick-response probe. A plane probe and a linear probe are used to measure the thermal activity, thermal conductivity, thermal diffusivity, and kinematic viscosity of some liquids at different velocities of flow.  相似文献   

10.
The paper reports new measurements of the thermal conductivity of molten lead at temperatures from 600 to 750 K. The measurements have been carried out with an updated version of a modified transient hot-wire (THW) method, where the hot-wire sensor is embedded within an insulating substrate with a planar geometry. However, unlike previous sensors of the same type, the updated sensor works with the hot-wire divided into three thermally isolated parts. The operation of this sensor has been modeled theoretically using a finite-element (FE) analysis and has subsequently been confirmed by direct observation. The new sensor is demonstrated to have a higher sensitivity and a better signal-to-noise ratio than earlier sensors. Molten lead is used as the test fluid. It has the lowest thermal conductivity of any material we have yet studied. This allows us to probe the limits of our sensor system for the thermal conductivity of high-temperature melts. It is estimated that the uncertainty of the measurements is 3% over the temperature range studied. The results are used to examine the application of the Wiedemann–Franz (W-F) relationship.  相似文献   

11.
Numerical simulation has been used to investigate the effects of natural convection on measurements of the thermal conductivity of fluids by transient hot-wire methods. Comparison of the numerical data with the experimental results obtained with a custom-built setup exploiting a short-wire geometry allows fixing an operationally useful time scale, where convective effects can be safely neglected.  相似文献   

12.
The transient short-hot-wire method for measuring thermal conductivity and thermal diffusivity makes use of only one thermal-conductivity cell, and end effects are taken into account by numerical simulation. A search algorithm based on the Gauss–Newton nonlinear least-squares method is proposed to make the method applicable to high-diffusivity (i.e., low-density) gases. The procedure is tested using computer-generated data for hydrogen at atmospheric pressure and published experimental data for low-density argon gas. Convergence is excellent even for cases where the temperature rise versus the logarithm of time is far from linear. The determined values for thermal conductivity from experimental data are in good agreement with published values for argon, while the thermal diffusivity is about 10 % lower than the reference data. For the computer-generated data, the search algorithm can return both thermal conductivity and thermal diffusivity to within 0.02 % of the exact values. A one-dimensional version of the method may be used for analysis of low-density gas data produced by conventional transient hot-wire instruments.  相似文献   

13.
This paper describes work at NPL to evaluate the capability of the transient plane source (TPS) technique using various sensor sizes and different types of materials that include solids (Perspex, alumina, extruded polystyrene, agar gel, and ice) and liquids (water and silicone oil). The aim of the present work is to investigate use of the TPS technique on materials where probe size, contact, and internal specimen convection are potentially important issues. Following validation of the technique on the NPL solid reference materials, measurements were carried out on ice using TPS and the NPL guarded hot plate (GHP) to illustrate the probe-to-sample thermal contact resistance issue. Measurements on silicone oil were compared to GHP and the NPL transient hot wire (THW) technique where the probe size/short times are crucial. In addition, measurements on water and agar gel were made to illustrate the influence of natural convection. Although the TPS is a multi-property technique, the focus of this work was on thermal conductivity.  相似文献   

14.
A recently developed dual vibrating-wire technique has been used to perform viscosity measurements of liquid toluene in the temperature range 213 KT298 K, and at pressures up to approximately 20 MPa. The results were obtained by operating the vibrating-wire sensor in both forced and free decay modes. The estimated precision of the viscosity measurements, in either mode of operation, is ±0.5%, for temperatures above or equal to 273 K, increasing with decreasing temperature up to ±1% at 213 K. The corresponding overall uncertainty is estimated to be within ±1% and ±1.5%, respectively.  相似文献   

15.
The thermal conductivity of thin, high-conducting ceramic bars—commonly used in mechanical tensile testing—is measured using a variant of the short transient hot-strip technique. As with similar contact transient methods, the influence from the thermal contact resistance between the sensor and the sample is accurately recorded and filtered out from the analysis—a specific advantage that enables sensitive measurements of the bulk properties of the sample material. The present concept requires sensors that are square in shape with one side having the same width as the bar to be studied. As long as this requirement is fulfilled, the particular size of the thin bar can be selected at will. This paper presents an application where the present technique is applied to study structural changes or degradation in reinforced carbon–carbon (RCC) bars exposed to thermal cycling. Simultaneously, tensile testing and monitoring of mass loss are conducted. The results indicate that the present approach may be utilized as a non-destructive quality control instrument to monitor local structural changes in RCC panels.Paper presented at the Seventeenth European Conference on Thermophysical Properties, September 5–8, 2005, Bratislava, Slovak Republic.  相似文献   

16.
Experimental measurements of the thermal conductivity of mono-, di-, tri-, and tetra-ethylene glycol are presented. The experiments were carried out at atmospheric pressure and at temperatures ranging from 25 to 65°C. The multi-current transient hot-wire technique has been used with a platinum wire of 25 μm diameter; the electrical current varied from 25 to 75 mA. For all studied glycols, it was found that the thermal conductivity increases with temperature and decreases with the glycol molar mass. The random uncertainty of the reported experimental thermal conductivity data is less than 0.9%. The estimated systematic errors affecting the obtained data are at most 2%. The values obtained in this study were compared with previously published results for the four glycols, finding deviations of the order of 2%.  相似文献   

17.
Based upon the theory that the thermal conductivity can be determined by measuring the speed of the propagation of the solid/liquid phase interface during a phase transition, a system was developed to investigate the thermal conductivity of metals and alloys at the liquid/solid phase transformation point. Furthermore, a mathematical method was applied to represent the melting and solidifying process in the phase transformation chamber, by which the error could be analyzed. In order to test the feasibility of the method and the measuring system, a series of verification experiments on lead have been performed to estimate the precision and the applicability of the measuring system. From comparisons with recommended data from the literature, the uncertainty of the experimental results is estimated to be about 5% which means the measuring method is suitable to determine the thermal conductivity of eutectic alloys and metals at the liquid/solid phase transformation point. This work provides a relatively precise method for thermal conductivity measurements on new materials such as lead-free solders.Paper presented at the Seventh Asian Thermophysical Properties Conference, August 23–28, 2004, Hefei and Huangshan, Anhui, P. R. China  相似文献   

18.
The measurement of thermal diffusivity for thin slabs by a converging thermal wave technique has been studied. Temperature variation at the center of the heat source ring that is produced by a pulsed high-power laser is detected by an infrared detector. A computer program based on the finite difference method is developed to analyze the thermal diffusivity of the slabs. Materials of both high thermal diffusivity (CVD diamond wafer) and low thermal diffusivity (stainless-steel foil) have been used for the measurements. The measurements have been performed by varying the size and the thickness of specimen. The converging thermal wave technique has proved to be a good method to measure the thermal diffusivity of a CVD diamond without breaking the wafer into small specimens. The technique can be applied for a small slab if the diameter of the slab is two times larger than that of the heat source ring. The sensitivity of thickness in measuring the thermal diffusivity is low for ordinary CVD diamond. The use of the converging thermal wave technique for nonhomogeneous, nonuniform, and anisotropic materials has been accomplished by applying the finite difference method.  相似文献   

19.
A transient short-hot-wire technique has been successfully used to measure the thermal conductivity and thermal diffusivity of molten salts (NaNO3, Li2CO3/K2CO3, and Li2CO3/Na2CO3) which are highly corrosive. This method was developed from the hot-wire technique and is based on two-dimensional numerical solutions of unsteady heat conduction from a short wire with the same length-to-diameter ratio and boundary conditions as those used in the actual experiments. In the present study, the wires are coated with a pure Al2O3 thin film by using a sputtering apparatus. The length and radius of the hot wire and the resistance ratio of the lead terminals and the entire probe are calibrated using water and toluene with known thermophysical properties. Using such a calibrated probe, the thermal conductivity and thermal diffusivity of molten nitrate are measured within errors of 3 and 20%, respectively. Also, the thermal conductivity of the molten carbonates can be measured within an error of 5%, although the thermal diffusivity can be measured within an error of 50%.  相似文献   

20.
This article describes the development of a method to measure the normal-to-plane thermal conductivity of a very thin electrically insulating film on a substrate. In this method, a metal film, which is deposited on the thin insulating films, is Joule heated periodically, and the ac-temperature response at the center of the metal film surface is measured by a thermo-reflectance technique. The one-dimensional thermal conduction equation of the metal/film/substrate system was solved analytically, and a simple approximate equation was derived. The thermal conductivities of the thermally oxidized SiO2 films obtained in this study agreed with those of VAMAS TWA23 within ± 4%. In this study, an attempt was made to estimate the interfacial thermal resistance between the thermally oxidized SiO2 film and the silicon wafer. The difference between the apparent thermal resistances of the thermally oxidized SiO2 film with the gold film deposited by two different methods was examined. It was concluded that rf-sputtering produces a significant thermal resistance ((20 ± 4.5) × 10−9 m2·K·W−1) between the gold film and the thermally oxidized SiO2 film, but evaporation provides no significant interfacial thermal resistance (less than ± 4.5 × 10−9 m2·K·W−1). The apparent interfacial thermal resistances between the thermally oxidized SiO2 film and the silicon wafer were found to scatter significantly (± 9 × 10−9 m2·K·W−1) around a very small thermal resistance (less than ± 4.5 × 10−9 m2·K·W−1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号