首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
环氧树脂潜伏性体系固化反应动力学研究   总被引:12,自引:2,他引:10  
本文用差式扫描量热仪(DSC)对BPEA-2/环氧树脂潜伏性固化体系的固化反应进行分析,并 分别利用Kissinger和Arrhenius方法求得了体系固化反应的表观活化能,利用Crane等理论求出 了体系固化反应的反应级数及不同反应温度下的反应速率常数,’写出了固化反应的动力学方程。 结果表明:BPEA-2/CYD-128环氧树脂潜伏性固化体系的表观活化能约为84.11kJ/mol,其反应 方程式为:-da/dt=k(1-a)0.96。  相似文献   

2.
陈平 《热固性树脂》1995,10(2):8-11
本文通过对二种潜伏性热固性树脂(环氧树脂)体系动力学参数的分析讨论。结果认为,理想的潜伏性热固性树脂体系的特征是具有较高的反应活化能(Ea)和频率因子(A);或者具有变活化能—既在室温下具有较高的反应活化能。  相似文献   

3.
分别采用Kissinger模型和Flnn-Wall-Ozawa(FWO)模型研究了E-51型环氧树脂/胺基酰亚胺潜伏性固化体系的非等温固化动力学,得到了该体系在这2种模型下的固化反应活化能.分析了不同动力学模型对该体系固化反应动力学研究的影响.结果表明,由2种模型得到的固化动力学参数基本相近.E-51/胺基酰亚胺体系的固化反应具有变活化能特征,固化反应起始阶段的活化能较高,约为103~112 kJ/mol;当固化度为0.9时,活化能约为63~82 kJ/mol.  相似文献   

4.
环氧树脂潜伏性体系固化反应的DSC研究   总被引:3,自引:1,他引:2  
易长海  李建宗 《粘接》1999,20(5):9-12
用差式扫描量热仪对BPEA-2/环氧树脂潜伏性固化体系的固化反应进行了分析。了固化剂的用量,固化温度,固化时间及升温速度时固化反应的热效应和固化度的影响。结果表明:BPEA-2潜伏性固化 用量以m(环氧):m(固化剂)=100:9-10)为宜。  相似文献   

5.
李璐  张贤明 《塑料科技》2023,(11):20-26
采用非等温差示扫描量热法(DSC)研究纯环氧树脂(EP)、环氧树脂/碳纳米管复合材料(EP/MWCNTs)、环氧树脂/超支化聚酯修饰碳纳米管复合材料(EP/MWCNTs-H204)和环氧树脂/超支化聚酰胺修饰碳纳米管复合材料(EP/MWCNTs-N103)4种体系的固化动力学。基于Kissinger方法和Ozawa方法计算了各体系反应的活化能。结果表明:经过超支化聚合物修饰的EP/MWCNTs-H204和EP/MWCNTs-N103体系比未经修饰的其余两个体系,具有较低的表观活化能,说明超支化聚合物的引入对环氧树脂复合材料的固化反应具有显著的促进作用。采用Málek方法得出自动催化模型(Sesták-Berggren),利用Sesták-Berggren对各体系进行理论计算,提出了描述固化过程的动力学参数和方程式。理论计算结果与实验结果进行对比相似度较高,说明Sesták-Berggren模型可以很好地描述4种不同环氧树脂体系的固化动力学行为。  相似文献   

6.
用红外光谱法研究了T31、低分子聚酰胺650(LMP-650)固化环氧树脂反应的动力学参数。实验表明,环氧-T31.固化反应的表观活化能为54.5KJ·mol~(-1),证明此反应常温下便有较高的速度;LMP-650固化环氧反应的表观活化能为74.4·4KJ·mol~(-1),表明常温下反应较缓慢,固化程度随温度变化明显。红外光谱法不但可以定量研究环氧树脂固化反应动力学多数,而且可在催化剂选择、两组分配比等方面提供信息。  相似文献   

7.
用IR、DSC等分析方法研究1,4-双(2-唑啉)苯或加入己二酸、对苯二酚加速剂对环氧树脂固化反应的影响,并对其固化反应和加速剂的作用进行了讨论。发现此固化体系即使加入加速剂仍可作潜伏性高温固化剂。  相似文献   

8.
通过差热分析(DSC)研究了非等温过程环氧树脂/液晶固化剂体系的固化反应动力学,研究了不同配比对固化反应的影响,固化反应转化率与固化温度的关系,计算了固化反应的活化能,确定了环氧树脂/液晶固化剂的固化工艺条件,用偏光显微镜观察了环氧树脂/液晶固化剂/4,4-二氨基二苯砜(DDS)体系在不同温度下固化时的形态。结果表明:液晶固化剂的加入量越大,固化反应速度越快;环氧树脂/液晶固化剂体系固化反应的活化能力为71.5kJ/mol,偏光显微镜观察表明:随着固化起始温度的增加,固化体系的形态由原来的具有各向异性的丝状结构变化为各向同性,液晶丝状条纹消失。  相似文献   

9.
以羟基封端低分子量聚苯醚、环氧氯丙烷为原料,制备出环氧封端的改性聚苯醚(PPOE)。采用示差扫描量热法(DSC)研究了PPOE与双酚A酚醛型环氧树脂(BNE-200)复合体系的固化动力学,计算了共混物固化反应的表观活化能和反应级数。结果表明:各样品在不同升温速率下均只有一个固化峰,固化体系接近于1级固化反应,说明PPOE与BNE-200具有比较好的相容性。随着PPOE用量的增加,固化特征温度呈降低趋势,固化的表观活化能降低。当PPOE用量为80%时,复合体系表观活化能为63.25 kJ/mol,比BNE-200的93.62 kJ/mol降低了32.4%,说明PPOE比BEN-200具有更高的反应活性。  相似文献   

10.
采用差示扫描量热(DSC)法研究了2-乙基-4-甲基咪唑(2E4MI)的含量对双氰胺(DICY)固化环氧树脂体系固化动力学的影响。非等温DSC测试结果表明,2E4MI能大幅度降低DICY固化环氧树脂所需要的温度和活化能,从而加快反应的进行。当2E4MI用量为0.2份时,活化能最低为84.2 kJ/mol且整体活化能随固化度的变化较小、固化更均匀。在2E4MI最佳用量(0.2份)下对固化体系进行等温DSC以及潜伏性测试,结果表明,该体系在160℃下20 min内可完成固化,室温储存15 d的固化度仅为0.146,说明其适合用作快速固化环氧树脂储存体系。  相似文献   

11.
分别以4,4‘-二氨基二苯甲烷(DDM)和4,4‘-二氨基二苯砜(DDS)为固化剂,采用非等温差示扫描量热法(DSC)研究了E-44和E-51两种双酚A型环氧树脂的固化反应动力学。收集与分析了在25~350℃范围内分别以5、10、15、20℃/min的升温速率进行固化的反应参数,然后采用Starink法计算得到不同环氧固化体系的表观活化能。同时,借助各固化体系的动态流变性能,分析了双酚A型环氧树脂/芳香胺固化体系的固化反应机理,并选用双参数自催化模型计算了各固化体系的反应速率方程。研究结果表明:当环氧固化体系的固化剂不同时,采用DDM作为固化剂的环氧固化体系(E-44/DDM、E-51/DDM),其表观活化能均低于添加DDS固化剂的环氧体系;选用同种固化剂(DDM或DDS)时,E-51树脂体系的表观活化能均低于E-44树脂固化体系。反应速率方程结果显示,该双参数自催化模型与实际试验结果的吻合性良好,可用于描述双酚A型环氧树脂/芳香胺固化体系的固化历程。  相似文献   

12.
采用差示扫描量热仪研究了不同牌号环氧树脂对双马来酰亚胺/氰酸酯(BMI/CE)树脂体系在不同升温速率下的固化反应。在保持BMI/CE质量比为1/2的前提下,加入同等质量不同牌号环氧树脂,运用Kissinger法、Ozawa法和Crane法求得不同体系的活化能、反应级数等动力学参数。结果表明,用环氧树脂(AG-80)改性的BMI/CE树脂体系的活化能的平均值为81.55kJ/mol,反应级数为0.93;环氧树脂(TDE-85)改性的BMI/CE树脂体系的活化能的平均值为69.25kJ/mol,反应级数为0.92;环氧树脂(TDE-85)改性的BMI/CE树脂体系更有利于固化工艺的实现。  相似文献   

13.
合成了1,3-二甲基-1,3-二乙基-1,3-双(3-(2,3-环氧丙氧基)丙基)二硅氧烷(TEDS)和1,3-二甲基-1,3-二乙基-1,3-二胺丙基二硅氧烷(TADS),用FTIR和DSC对TEDS/TADS体系的固化反应动力学进行了研究,结果表明,反应对TEDS和TADS均为一级反应,固化体系的反应活化能在45-65kJ/mol,与文献报道的双酚A环氧树脂的反应活化能相一致。  相似文献   

14.
合成了1, 3-二甲基-1, 3-二乙基-1, 3-双[3-(2, 3-环氧丙氧基)两基]二硅氧烷(TEDS)和 1, 3-二甲基-1, 3-二乙基-1, 3-二胺丙基二硅氧烷(TADS)。用 FTIR和 DSC对TEDS/TADS体系的固化反应动力学进行了研究,结果表明:反应对TEDS和TADS均为一级反应,固化体系的反应活化能在 45-65kJ/mol,与文献报道的双酚 A环氧树脂的反应活化能相一致。  相似文献   

15.
本文报道用差示扫描量热法(DSC)研究自制的有机硅改性AS—70环氧树脂固化反应的结果.讨论该树脂与几种常用固化剂固化反应的温度,反应热和反应活化能及在一定温度下固化反应的速率.  相似文献   

16.
酸酐固化环氧树脂潜伏性促进体系的研究   总被引:1,自引:0,他引:1  
本文应用DSC、TBA和旋转粘度计等手段对一种乙酰丙酮过渡金属络合物对酸酐固化环氧树脂体系的潜伏性促进作用和固化反应动力学进行了研究。结果表明,这种乙酰丙酮金属络合物可做为酸酐固化环氧树脂体系的潜伏性促进剂.其体系的固化反应速率随金属络合物浓度的增加而加快.在160℃~180℃体系具有非常短的凝胶化时间。在室温下,其体系的贮存使用期可达二个月以上。整个固化反应过程遵循一级动力学.对含有此促进剂和叔胺促进剂的酸酐固化环氧树脂体系固化产物进行了电、力学和耐热性能的研究和对比。  相似文献   

17.
改性双氰胺衍生物固化环氧树脂的研究   总被引:2,自引:0,他引:2  
针对双氰胺固化环氧树脂时固化温度过高的缺点,从自行设计并合成的一系列改性双氰胺中筛选出一种,将其与环氧树脂复配制成单组分潜伏性环氧树脂胶粘剂,利用差示扫描量热法(DSC)和红外光谱法(FT-IR) 对单组分环氧树脂固化体系的固化反应进行了分析和研究。结果表明,改性双氰胺与双氰胺相比,具有较高的活性,显著降低了固化反应的反应温度;所配制的单组分环氧树脂胶粘剂具有较长的贮存期和良好的固化性能。  相似文献   

18.
芳香胺改性双氰胺固化环氧树脂反应动力学研究   总被引:1,自引:0,他引:1  
通过示差扫描量热法分析(DSC)研究了芳香胺改性双氰胺/环氧树脂E-44体系的固化反应,并探讨了反应的机理。结果表明,芳香胺改性双氰胺对环氧树脂E-44具有较高的固化反应活性,反应表观活化能明显降低,固化反应可以在中温进行。其固化反应机理与未改性的双氰胺环氧体系不同。  相似文献   

19.
李建  李伟 《广东化工》2012,39(5):270-271,267
采用差示扫描量热法(DSC)研究了N-乙基邻对甲苯磺酰胺/环氧树脂体系的固化过程,研究了不同配比对固化反应的影晌,固化度与固化温度的关系,计算了固化反应表观活化能和反应级数,确定了N-乙基邻对甲苯磺酰胺/环氧树脂体系的固化工艺。结果表明:不同升温速率下,体系固化温度有很大差异,随着升温速率的提高,固化温度增加。通过动力学计算得到体系最佳固化温度为90℃,固化时间为4~6 h,固化体系的活化能为29.1 kJ/mol,反应级数为0.81。  相似文献   

20.
利用差示扫描量热法(DSC)研究了环氧树脂(EP)/癸二酸二酰肼(SDH)粘料体系中固化剂含量和促进剂含量对固化反应和粘料体系热性能的影响,确定了固化工艺温度有固化反应动力学参数。结果表明:当EP/SDH的摩尔比为1:1/5,促进剂含量为0.4%时,固化产物的耐热性较好,该体系的固化反应表观活化能(E)为91.90KJ/mol,反应级数(n)为0.95,频率因子(InA)为22.09Sec^-1。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号