首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate the exponential stability and L2‐gain analysis for the synchronization of stochastic complex networks under average dwell time switched topology with consideration of external disturbance, internal noise and fast time‐varying delay in the synchronized process. Based on the proposed stochastic network, a new L2‐gain synchronization is proposed to solve the mean‐square exponential stable under switched topology with an H performance from the extrinsic disturbances to the synchronization error. The obtained results are applicable for the fast time‐varying case with larger‐than‐1 delay derivative. Finally, numerical simulations are performed to demonstrate the effectiveness of our strategies.  相似文献   

2.
This paper proposes a control architecture that employs event‐triggered control techniques to achieve output synchronization of a group of heterogeneous linear time‐invariant agents. We associate with each agent an event‐triggered output regulation controller and an event‐triggered reference generator. The event‐triggered output regulation controller is designed such that the regulated output of the agent approximately tracks a reference signal provided by the reference generator in the presence of unknown disturbances. The event‐triggered reference generator is responsible for synchronizing its internal state across all agents by exchanging information through a communication network linking the agents. We first address the output regulation problem for a single agent where we analyze two event‐triggered scenarios. In the first one, the output and input event detectors operate synchronously, meaning that resets are made at the same time instants, while in the second one, they operate asynchronously and independently of each other. It is shown that the tracking error is globally bounded for all bounded reference trajectories and all bounded disturbances. We then merge the results on event‐triggered output regulation with previous results on event‐triggered communication protocols for synchronization of the reference generators to demonstrate that the regulated output of each agent converges to and remains in a neighborhood of the desired reference trajectory and that the closed‐loop system does not exhibit Zeno solutions. Several examples are provided to illustrate the advantages and issues of every component of the proposed control architecture. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
This paper studies state synchronization of homogeneous multiagent systems (MAS) via a static protocol with partial‐state coupling in the presence of a time‐varying communication topology, which includes general time‐varying graphs as well as switching graphs. If the agents are squared‐down passive or squared‐down passifiable (via static output feedback or static input feedforward), then a static protocol can be designed for balanced, time‐varying graphs. Moreover, this static protocol works for arbitrary switching directed graphs if the agents are squared‐down minimum phase with relative degree one. The static protocol is designed for each agent such that state synchronization is achieved without requiring exact knowledge about the time‐varying network.  相似文献   

4.
This paper studies state synchronization of homogeneous time‐varying networks with diffusive full‐state coupling or partial‐state coupling. In the case of full‐state coupling, linear agents as well as a class of nonlinear time‐varying agents are considered. In the case of partial‐state coupling, we only consider linear agents, but, in contrast with the literature, we do not require the agents in the network to be minimum phase or at most weakly unstable. In both cases, the network is time‐varying in the sense that the network graph switches within an infinite set of graphs with arbitrarily small dwell time. A purely decentralized linear static protocol is designed for agents in the network with full‐state coupling. For partial‐state coupling, a linear dynamic protocol is designed for agents in the network while using additional communication among controller variables using the same network. In both cases, the design is based on a high‐gain methodology. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
This paper addresses the bounded H synchronization problem for the time‐varying coupled networks with stochastic noises and randomly occurring nonlinearities over a finite horizon. The bounded H synchronization performance constraint is proposed to quantify the degree of the synchronization regarding the exogenous disturbances. The nonlinearities considered in this paper are assumed to satisfy the sector‐like conditions and characterized by a time‐varying Bernoulli distribution with measurable probability in real time. Based on the Kronecker product and the Hadamard product, a sufficient condition is established firstly to ensure the bounded H synchronization of the network by utilizing the probability‐dependent method. Then the obtained criterion is further converted into a computationally available one by transforming the time‐varying probability into a polytopic form, which is presented in terms of matrix inequalities and hence can be verified easily by applying the Matlab toolbox. Finally, simulation examples are given to demonstrate the effectiveness of the theoretical results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
This paper studies the synchronization problem for a network of identical discrete‐time agents with unknown uniform constant communication delay. When the agents are non‐introspective, the problem is solvable via a decentralized low‐gain‐based synchronization controller if the delay satisfies the proposed upper bound. When the agents are introspective, the synchronization problem can be solved with arbitrary bounded communication delay. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
This study investigates the fully distributed bipartite output consensus issue of heterogeneous linear multiagent systems (HLMASs) based on event‐triggered transmission mechanism. Both the cooperative interaction and the antagonistic interaction between neighbor agents are considered. A fully distributed bipartite compensator consisting of time‐varying coupling gain and dynamic event‐triggered mechanism is first proposed to estimate the leader's states. Different from the existing schemes, the proposed compensator is independent of any global information of the network topology, is capable of achieving intermittent communication between neighbors, and is applicable for the signed communication topology. Then the distributed output feedback control protocol is developed such that the fully distributed bipartite event‐triggered output consensus problem can be achieved. Moreover, we extend the results in HLMASs without external disturbances to HLMASs with disturbances, which is more challenging in three cases (a) the disturbances are not available for measurement, (b) the disturbances suffered by each agent are heterogeneous, and (c) the disturbances are not required to be stable or bounded. It is proven that the proposed controllers fulfill the exclusion of Zeno behavior in two consensus problems. Finally, two examples are provided to illustrate the feasibility of the theoretical results.  相似文献   

8.
This paper considers the problem of almost disturbance decoupling (ADD) via sampled‐data output feedback control for a class of uncertain nonlinear systems subject to time‐delays. Based on output feedback domination approach, a sampled‐data output feedback controller is designed to globally stabilize the system under a lower‐triangular linear growth condition. Gronwall‐Bellman‐like inequality and inductive method are introduced to estimate the state growth in the presence of time‐delays, uncertain nonlinearities and unknown disturbances. The proposed controller can attenuate the influence of disturbances on the output to an arbitrary degree in the L2 gain sense. Finally, simulation results show the effectiveness of the control method.  相似文献   

9.
This paper studies output synchronization problem, formation problem, and regulated synchronization problem for a heterogenous network of discrete‐time introspective right‐invertible agents. We first propose a decentralized control scheme to solve the output synchronization problem for a set of communication topologies. Moreover, if the synchronization trajectories are assumed to be bounded, a universal controller can be constructed for all communication topologies, which contain a directed spanning tree. The design can be applied to solve the formation problem with arbitrary formation vectors. In the regulated synchronization problem, we assume only the root receives information from exosystem. We then design a decentralized controller to solve the problem for a set of communication topologies. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
This paper studies the synchronization problem for multiagent systems with identical continuous‐ or discrete‐time agents with unknown nonuniform constant input delays. The agents are connected via full‐ or partial‐state coupling. The agents are assumed to be asymptotically null controllable, ie, all eigenvalues are in the closed left‐half complex plane for continuous‐time agents or in the closed unit disc for discrete‐time agents. We derive an upper bound for the input delay tolerance, which explicitly depends on the agent dynamics. Moreover, for any unknown delay satisfying this upper bound, a low‐gain–based protocol design methodology is proposed without relying on exact knowledge of the network topology such that synchronization is achieved among agents for any network graph in a given set.  相似文献   

11.
In this paper, a robust stabilization problem for a class of linear time‐varying delay systems with disturbances is studied using sliding mode techniques. Both matched and mismatched disturbances, involving time‐varying delay, are considered. The disturbances are nonlinear and have nonlinear bounds which are employed for the control design. A sliding surface is designed and the stability of the corresponding sliding motion is analysed based on the Razumikhin Theorem. Then a static output feedback sliding mode control with time delay is synthesized to drive the system to the sliding surface in finite time. Conservatism is reduced by using features of sliding mode control and systems structure. Simulation results show the effectiveness of the proposed approach. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
This paper studies H2 and H almost output synchronization problems for heterogeneous continuous‐time multiagent systems with passive agents and strongly connected communication graph. For non‐introspective passive agents, a linear static protocol can be designed to achieve almost output synchronization with arbitrarily small H2 norm. Moreover, we show that the H almost output synchronization problem via static protocol is not solvable for this class of systems.  相似文献   

13.
In this paper, we consider the output synchronization problem for heterogeneous networks of right‐invertible linear agents. We assume that all the agents are introspective, meaning that they have access to their own local measurements. Under this assumption, we then propose a decentralized control scheme for solving the output synchronization problem for a set of network topologies. The proposed scheme can also be applied to solve the output formation problem with arbitrary formation vectors. We also consider the regulation of output synchronization problem, where the output of each agent has to track an a priori specified reference trajectory, generated by an exosystem. In this case, we assume that the root agent has access to its own output relative to the reference trajectory.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Time‐varying output formation control problems for linear multi‐agent systems with switching topologies are studied, where two types of switching topologies are considered: (1) the topology is undirected and jointly connected, and 2) each topology is directed and has a spanning tree. An output formation protocol under switching topologies is constructed using the outputs of neighboring agents via dynamic output feedback. Two algorithms are proposed to design the dynamic protocols under both jointly connected topologies and switching directed topologies. Time‐varying output formation feasibility conditions are given to describe the compatible relationship among the desired time‐varying output formation, the dynamics of each agent, and the switching topologies. The stability of the closed‐loop multi‐agent systems under the proposed two algorithms is investigated based on the common Lyapunov functional theory and the piecewise Lyapunov functional theory, respectively. In the case where the topologies are jointly connected, time‐varying output formation can be achieved for multi‐agent systems using the designed protocol if the given time‐varying output formation satisfies the feasible constraint. For the case where the switching topologies are directed and have a spanning tree, the time‐varying output formation can be realized if the output formation feasibility constraint is satisfied and the dwell time is larger than a positive threshold. Moreover, approaches to determine the output formation references are provided to describe the macroscopic movement of the time‐varying output formation. Finally, numerical simulation results are presented to demonstrate the effectiveness of the theoretical results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, the gain‐scheduled control problem is addressed by using probability‐dependent Lyapunov functions for a class of discrete‐time stochastic delayed systems with randomly occurring sector nonlinearities. The sector nonlinearities are assumed to occur according to a time‐varying Bernoulli distribution with measurable probability in real time. The multiplicative noises are given by means of a scalar Gaussian white noise sequence with known variances. The aim of the addressed gain‐scheduled control problem is to design a controller with scheduled gains such that, for the admissible randomly occurring nonlinearities, time delays and external noise disturbances, the closed‐loop system is exponentially mean‐square stable. Note that the designed gain‐scheduled controller is based on the measured time‐varying probability and is therefore less conservative than the conventional controller with constant gains. It is shown that the time‐varying controller gains can be derived in terms of the measurable probability by solving a convex optimization problem via the semi‐definite programme method. A simulation example is exploited to illustrate the effectiveness of the proposed design procedures. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, we consider the semi‐global regulation of output synchronization problem for heterogeneous networks of invertible linear agents subject to actuator saturation. That is, we regulate the output of each agent according to an a priori specified reference model. The network communication infrastructure provides each agent with a linear combination of its own output relative to that of neighboring agents, and it allows the agents to exchange information about their own internal observer estimates while some agents have access to their own outputs relative to the reference trajectory.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
This paper addresses the problem of almost disturbance decoupling (ADD) using sampled‐data output feedback control for a class of continuous‐time nonlinear systems. Under a lower‐triangular linear growth condition, a sampled‐data output feedback controller is constructed based on the output feedback domination approach, and a Gronwall–Bellman‐like inequality is established in the presence of disturbances. Even though a sampled‐data controller is employed for easy computer implementation, the proposed controller is still able to achieve ADD under the commonly used continuous‐time requirement, that is, the disturbances' effect on the output is attenuated to an arbitrary degree of accuracy in the L2 gain sense. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Differential graphical games have been introduced in the literature to solve state synchronization problem for linear homogeneous agents. When the agents are heterogeneous, the previous notion of graphical games cannot be used anymore and a new definition is required. In this paper, we define a novel concept of differential graphical games for linear heterogeneous agents subject to external unmodeled disturbances, which contain the previously introduced graphical game for homogeneous agents as a special case. Using our new formulation, we can solve both the output regulation and H output regulation problems. Our graphical game framework yields coupled Hamilton‐Jacobi‐Bellman equations, which are, in general, impossible to solve analytically. Therefore, we propose a new actor‐critic algorithm to solve these coupled equations numerically in real time. Moreover, we find an explicit upper bound for the overall ‐gain of the output synchronization error with respect to disturbance. We demonstrate our developments by a simulation example.  相似文献   

19.
The control algorithm based on the uncertainty and disturbance estimator (UDE) is a robust control strategy and has received wide attention in recent years. In this paper, the two‐degree‐of‐freedom nature of UDE‐based controllers is revealed. The set‐point tracking response is determined by the reference model, whereas the disturbance response and robustness are determined by the error feedback gain and the filter introduced to estimate the uncertainty and disturbances. It is also revealed that the error dynamics of the system is determined by two filters, of which one is determined by the error feedback gain and the other is determined by the filter introduced to estimate the uncertainty and disturbances. The design of these two filters are decoupled in the frequency domain. Moreover, after introducing the UDE‐based control, the Laplace transform can be applied to some time‐varying systems for analysis and design because all the time‐varying parts are lumped into a signal. It has been shown that, in addition to the known advantages over the time‐delay control, the UDE‐based control also brings better performance than the time‐delay control under the same conditions. Design examples and simulation results are given to demonstrate the findings. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
This paper studies synchronization to a desired trajectory for multi‐agent systems with second‐order integrator dynamics and unknown nonlinearities and disturbances. The agents can have different dynamics and the treatment is for directed graphs with fixed communication topologies. The command generator or leader node dynamics is also nonlinear and unknown. Cooperative tracking adaptive controllers are designed based on each node maintaining a neural network parametric approximator and suitably tuning it to guarantee stability and performance. A Lyapunov‐based proof shows the ultimate boundedness of the tracking error. A simulation example with nodes having second‐order Lagrangian dynamics verifies the performance of the cooperative tracking adaptive controller. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号