首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, we propose a novel interconnection and damping assignment passivity-based control (IDA-PBC) design for a quarter car nonlinear active suspension system. As an energy shaping method, IDA-PBC is suitable for applying the main concept of skyhook (SH) control. In addition to the damping term, we utilize the characteristics of the energy shaping method to change the sprung and unsprung masses, thereby strengthening the vibration suppression effect. An IDA-PBC-based controller design for an active suspension system, which includes a nonlinear spring, a nonlinear damper, and mass uncertainty, is proposed. Different from most IDA-PBC applications, which tend to control the position or the velocity, our methods focus on transforming a nonlinear suspension system into a desired linear system with ideal aseismatic properties. Unlike a conventional controller using the SH control strategy, we design a virtual vehicle body and an unsprung mass in addition to the damper coefficients. By deriving the port-Hamiltonian form of the suspension system from its dynamics and rewriting it based on the relative coordinates, we obtain a feedback law that only uses the relative displacement and velocity of the suspension system. We derive the conditions for ensuring the global asymptotical stability of the suspension system and propose the guidelines for parameter selection that can guarantee robust stability against parameter uncertainties.  相似文献   

2.
In this paper, both the dynamics and noncollocated model‐free position control (NMPC) for a space robot with multi‐link flexible manipulators are developed. Using assumed modes approach to describe the flexible deformation, the dynamic model of the flexible space robotic system is derived with Lagrangian method to represent the system dynamic behaviors. Based on Lyapunov's direct method, the robust model‐free position control with noncollocated feedback is designed for position regulation of the space robot and vibration suppression of the flexible manipulators. The closed‐loop stability of the space robotic system can be guaranteed and the guideline of choosing noncollocated feedback is analyzed. The proposed control is easily implementable for flexible space robot with both uncertain complicated dynamic model and unknown system parameters, and all the control signals can be measured by sensors directly or obtained by a backward difference algorithm. Numerical simulations on a two‐link flexible space robot are provided to demonstrate the effectiveness of the proposed control.  相似文献   

3.
In this paper, a dead‐zone based model of saturation phenomena is proposed. This method is capable of modelling diverse kinds of saturation, including both hard‐limited and soft‐limited. Due to use of a linear parameter approach, the proposed model is consistent with the available adaptive control techniques in the literature. In addition, based on the proposed model, an adaptive controller is designed for a class of nonlinear saturated systems, where, the shape of the saturation phenomenon is assumed to be unknown. The effectiveness of the proposed method and its robustness against initial condition variation and reference signal is evaluated via simulated examples for both spring–mass–damper and ship steering autopilot systems.  相似文献   

4.
This paper investigates the vibration control problem for offshore platform, where the nonlinear characteristics, delayed input and external wave force are considered in time domain. By introducing a delay‐free reconstructional vector and applying the maximum principle, the original vibration problem for offshore platform is formulated as a nonlinear two‐point‐boundary‐value (TPBV) problem with delayed items. The major contribution of this paper is that a performance‐based near‐optimal vibration control strategy is proposed by solving this nonlinear TPBV problem, which includes a feedback item with offshore platform system state, a feedforward item with wave force state, and a compensator for nonlinear and delayed items with infinite supersensitive component. In particular, the designed compensator is calculated from two group series of linear differential equations by introducing a parameter for expending the Maclaurin series of nonlinear and delay items. Meanwhile, an iterative algorithm is designed to make the proposed vibration control scheme computable based on the control performance in each iterative procedure. Finally, experimental results show that the displacement, velocity and performance index of an employed offshore platform achieved small values under the proposed control strategy and designed algorithm.  相似文献   

5.
磁流变减振器的主共振研究   总被引:3,自引:3,他引:0  
采用一种改进的Bingham模型描述磁流变阻尼力,研究了在弹簧变形量较大时,单自由度磁流变系统的主共振.利用平均法得到了系统的一阶近似解,并进行了数值验证.通过研究各种参数对主共振幅频曲线的影响,可以有效地控制系统的主共振.此外,还对该磁流变减振器和普通减振器在主共振时系统的振幅大小等动态参数进行了比较,结果表明磁流变减振器的减振效果较好.  相似文献   

6.
In this paper, the global sampled‐data output‐feedback stabilization problem is considered for a class of stochastic nonlinear systems. First, based on output‐feedback domination technique and emulation approach, a systematic design procedure for sampled‐data output‐feedback controller is proposed for a class of stochastic lower‐triangular nonlinear systems. It is proved that the proposed sampled‐data output‐feedback controller will stabilize the given stochastic nonlinear system in the sense of mean square exponential stability. Because of the domination nature of the proposed control approach, it is shown that the proposed control approach can also be used to handle the global sampled‐data output‐feedback stabilization problems for a more general class of stochastic non‐triangular nonlinear systems. Finally, simulation examples are given to demonstrate the effectiveness of the proposed method. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
This paper investigates the global finite‐time stabilization for a class of high‐order switched nonlinear systems via the sampled‐data output feedback control. Firstly, we design a continuous‐time output feedback controller for the nominal part via adding a power integrator technique. Based on the homogeneous theory, together with the Gronwall‐Bellman inequality, a sampled‐data output feedback controller is designed with suitable sampling periods to ensure that the closed‐loop system can be globally stabilized in finite time. In the meantime, the proposed control method can be extended to the switched nonlinear systems with an upper‐triangular growth condition. Finally, two examples are presented to illustrate the validity of the proposed control scheme.  相似文献   

8.
考虑描述磁流变(MR)阻尼器力学行为的LuGre动态摩擦模型,建立了新的斜拉索-MR阻尼器系统模型,该模型能够很好地描述斜拉索-阻尼器系统的动态特性,且能够实时辨识MR阻尼器内部参数.对于新的系统模型,基于Lyapunov直接法设计了抑制斜拉索振动的半主动自适应控制方法;原系统可变换为带有小参数的奇摄动系统,采用奇摄动理论对该系统进行分析,得到了另一类半主动自适应控制方法.仿真结果表明提出的两种控制方法均能够很好地抑制拉索振动.  相似文献   

9.
A boiler‐turbine unit is a primary module for coal‐fired power plants, and an effective automatic control system is needed for the boiler‐turbine unit to track the load changes with the drum water level kept within an acceptable range. The aim of this paper is to develop a nonlinear tracking controller for the Bell‐Åström boiler‐turbine unit. A Takagi‐Sugeno fuzzy control system is introduced for the nonlinear modeling of the Bell‐Åström boiler‐turbine unit. Based on the Takagi‐Sugeno fuzzy models, a nonlinear tracking controller is developed, and the proposed control law is comprised of a state‐feedforward term and a state‐feedback term. The stability of the closed‐loop control system is analyzed on the basis of Lyapunov stability theory via the linear matrix inequality approach and Schur complement. Moreover, model uncertainties are also considered, and it is proved that with the proposed control law the tracking error converges to zero. To assess the performance of the proposed nonlinear state‐feedback state‐feedforward control strategy, a nonlinear model predictive control strategy and a linear strategy are presented as comparisons. The effectiveness and the advantages of the proposed nonlinear state‐feedback state‐feedforward control strategy are demonstrated by simulations.  相似文献   

10.
Direct‐drive (DD) motors have the characteristics of simple structure and high controllability without reduction gears or ball screws. However, DD motors are more sensitive to the disturbance torque and parameter variation than other motor systems, which have reduction gears. Enhancement of DD motor stiffness by increasing the gain is one of the effective methods to reduce this influence, but large gain will lead to instability and even vibration. Viewed from mechatronics design, an ER variable damper with a damping coefficient that can be changed depending on how the applicable voltage is designed, and directly attached to the shaft of the DD motor to achieve high servo stiffness. The structure and the damping coefficient model of the proposed ER variable damper are developed. The validation of this mechatronics design is demonstrated by a position PD (proportional derivative) control DD motor system with numerical simulations, which achieved both high stiffness and good stability for the controlled DD motor system. © 2002 Wiley Periodicals, Inc.  相似文献   

11.
This paper considers the design of a nonlinear observer‐based output‐feedback controller for oil‐field drill‐string systems aiming to eliminate (torsional) stick–slip oscillations. Such vibrations decrease the performance and reliability of drilling systems and can ultimately lead to system failure. Current industrial controllers regularly fail to eliminate stick–slip vibrations under increasingly challenging operating conditions caused by the tendency towards drilling deeper and inclined wells, where multiple vibrational modes play a role in the occurrence of stick–slip vibrations. As a basis for controller synthesis, a multi‐modal model of the torsional drill‐string dynamics for a real rig is employed, and a bit–rock interaction model with severe velocity‐weakening effect is used. The proposed model‐based controller design methodology consists of a state‐feedback controller and a (nonlinear) observer. Conditions, guaranteeing asymptotic stability of the desired equilibrium, corresponding to nominal drilling operation, are presented. The proposed control strategy has a significant advantage over existing vibration control systems as it can effectively cope with multiple modes of torsional vibration. Case study results using the proposed control strategy show that stick–slip oscillations can indeed be eliminated in realistic drilling scenarios in which industrial controllers fail to do so. Moreover, key robustness aspects of the control system involving the robustness against uncertainties in the bit–rock interaction and changing operational conditions are evidenced. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper, globally asymptotical stabilization problem for a class of planar switched nonlinear systems with an output constraint via smooth output feedback is investigated. To prevent output constraint violation, a common tangent‐type barrier Lyapunov function (tan‐BLF) is developed. Adding a power integrator approach (APIA) is revamped to systematically design state‐feedback stabilizing control laws incorporating the common tan‐BLF. Then, based on the designed state‐feedback controllers and a constructed common nonlinear observer, smooth output‐feedback controllers, which can make the system output meet the predefined constraint during operation, are proposed to deal with the globally asymptotical stabilization problem of planar switched nonlinear systems under arbitrary switchings. A numerical example is employed to verify the proposed method.  相似文献   

13.
This paper proposes a composite approach to implementing attitude tracking and active vibration control of a large space flexible truss system. The system dynamic model is based on Hamilton's principle and discretized using the finite difference method. A nonlinear attitude controller for position tracking is developed based on the input‐output linearization of the discretized system, which can effectively improve system performance compared with a traditional proportional‐differential feedback controller. A taut cable actuator scheme is presented to suppress tip vibration because the mechanical model is a large large‐span spatial structure; furthermore, because the cable has the feature of unilateral input saturation constraint, which can provide only a pulling force, a nonlinear quadratic regulator controller is developed by introducing a piecewise nonquadratic cost function to suppress the vibration of the flexible structure. To investigate the factors that influence the damping effects of the cable, the parametrically excited instability of a cable under 2 supports is analyzed. Simulation results illustrate that the proposed attitude controller can implement the task of position tracking, and the vibration suppression control law is shown to be optimal for functional performance with input saturation.  相似文献   

14.
一种新型浮筏的模糊减振控制   总被引:1,自引:0,他引:1  
本文针对带有电流变液智能阻尼器的新型浮筏装置提出了前馈和反馈两种模糊控制策略并进行了实验研究.前馈模糊控制策略根据浮筏所受到的振动激励信号的主频特性来确定模糊控制器的控制规则,反馈模糊控制策略则是根据簧载质量的位移响应来制定控制规则,二者的最终目的都是通过模糊控制算法来得到最优的电流变液阻尼器控制电压,达到期望的隔振效果.实验结果证明,两种模糊控制策略控制下的浮筏隔振系统的隔振性能都要远远好于传统的最优被动浮筏隔振系统.  相似文献   

15.
Active tuned mass damper (ATMD) systems have been used extensively to reduce vibrations in machines. The motivation of this study is attenuating the vibrations in a Free-Piston Stirling Engine/Linear Alternator (FPSE/LA) for a frequency band of 47–53 Hz using an electromagnetic ATMD that employs a linear Voice Coil Motor (VCM) for periodic excitation rejection. To the authors’ knowledge, however several approaches to minimize vibrations in Stirling machines have been patented, the technique proposed in this research differs from other patented work by the simplicity of the proposed control law which aims to attenuate the engine vibrations at the fundamental operating frequency. The proposed control system features a zero-placement technique that utilizes both relative or absolute position and velocity feedback from the system response as well as a feedthrough measurement of the disturbance frequency that is used to determine the position gain online. The performance of the control system with the ATMD was evaluated both theoretically and experimentally. A test rig emulating the vibration behavior of the Stirling engine, featuring an electrodynamic shaker and an ATMD was developed and a model of the rig is presented and validated. A novel experimental procedure of identifying unknown stiffness and unknown dynamic mass of a spring–mass system is also presented. Similarly, another experimental procedure of determining the damping coefficient in the electromagnetic ATMD is shown. The implementation findings illustrate that the proposed active controller succeeds in broadening the attenuation band from 50±0.5 Hz to between 45 Hz and 55 Hz.  相似文献   

16.
This article focuses on the problem of adaptive finite‐time neural backstepping control for multi‐input and multi‐output nonlinear systems with time‐varying full‐state constraints and uncertainties. A tan‐type nonlinear mapping function is first proposed to convert the strict‐feedback system into a new pure‐feedback one without constraints. Neural networks are utilized to cope with unknown functions. To improve learning performance, a composite adaptive law is designed using tracking error and approximate error. A finite‐time convergent differentiator is adopted to avoid the problem of “explosion of complexity.” By theoretical analysis, all the signals of system are proved to be bounded, the outputs can track the desired signals in a finite time, and full‐state constraints are not transgressed. Finally, comparative simulations are offered to confirm the validity of the proposed control scheme.  相似文献   

17.
A mode decoupling control strategy is proposed for the active Kinetic Dynamic Suspension Systems (KDSS) with electrohydrostatic actuator (EHA) to improve the roll and warp mode performances. A matrix transfer method is employed to derive the modes of body and wheel station motions for full vehicle with active KDSS. The additional mode stiffness produced by the active KDSS is obtained and quantitatively described with the typical physical parameters. A new hierarchical feedback control strategy is proposed for the active KDSS to improve the roll and warp motion performances and simultaneously accounting for nonlinear dynamics of the actuators with hydraulic uncertainties. H∞ static output‐feedback control is employed to obtain the desirable mode forces, and a new projection‐based adaptive backstepping sliding mode tracking controller is designed for EHA to deal with address the nonlinearity and parameters uncertainty. This controller is used to realize the desirable pressure difference of EHA required from the target mode forces. Numerical simulations are presented to compare the roll and warp performances between the active KDSS, conventional spring‐damper suspension, and suspension with antiroll bar under typical excitation conditions. The evaluation indices are normalized and compared with radar chart. The obtained results illustrate that the proposed active KDSS with proposed controller does not produce additional warp motion for vehicle body, and has achieved more reasonable tire force distribution among wheel stations, the roll stability, road holding, and significantly improved ride comfort simultaneously.  相似文献   

18.
In this work, a new robust nonlinear feedback control method with dynamic active compensation is proposed; the active control method has been applied to an integral series of finite‐time single‐input single‐output nonlinear system with uncertainty. In further tracking the closed‐loop stability and nonlinear uncertainty, an extended state observer has been employed to solve the immeasurability and nonlinear uncertainty within a nonlinear system. A singular perturbation theory has been used to solve for the finite‐time stability of the closed‐loop system; furthermore, numerical simulations showed that the robust nonlinear feedback controller tracked the uncertainty in a nonlinear Duffing‐type oscillator and has proven the effectiveness of the approximate finite‐time control strategy proposed. By using an approximate finite‐time control approach with active compensation, the uncertainty in a nonlinear system could be accurately estimated and controlled. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, modeling and controlling problem for a two‐link rigid‐flexible manipulator in three‐dimensional (3D) space is studied under actuator faults. For modeling, the dynamics of the 3D mechanical system is represented by nonlinear partial differential equations, which is first derived in infinite dimension form. Based on the nonlinear model, the controller is proposed, which can achieve joint angle control and vibration suppression control in the presence of actuator faults. The stability analysis of the closed‐loop system is given based on LaSalle invariance principle. Numerical simulations illustrate the effectiveness of the proposed controller. This study will promote the development of nonlinear flexible manipulator systems in 3D space.  相似文献   

20.
In this paper, the decentralized adaptive neural network (NN) output‐feedback stabilization problem is investigated for a class of large‐scale stochastic nonlinear strict‐feedback systems, which interact through their outputs. The nonlinear interconnections are assumed to be bounded by some unknown nonlinear functions of the system outputs. In each subsystem, only a NN is employed to compensate for all unknown upper bounding functions, which depend on its own output. Therefore, the controller design for each subsystem only need its own information and is more simplified than the existing results. It is shown that, based on the backstepping method and the technique of nonlinear observer design, the whole closed‐loop system can be proved to be stable in probability by constructing an overall state‐quartic and parameter‐quadratic Lyapunov function. The simulation results demonstrate the effectiveness of the proposed control scheme. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号