首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, an accurate model of an airbrake electro‐hydraulic smart actuator is obtained by physical considerations, and then different control strategies (variable‐gain proportional control, PT1 control with switching integrator, and second order sub‐optimal sliding mode control) are proposed and analyzed. This application is innovative in the avionic field, and is one of the first attempts to realize a fly‐by‐wire system for airbrakes, oriented to its immediate employment and installation on current aircraft. The project was carried on with the participation of the Italian Ministry of Defense, and was commissioned to MAG, a leading provider of integrated systems and aviation services for aerospace. Copyright © 2011 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

2.
This paper addresses a low‐complexity distributed containment control problem and its extension to fault‐tolerant control for networked nonlinear pure‐feedback systems under a directed graph. The multiple dynamic leaders are neighbors of only a subset of the followers described by completely non‐affine multi‐input multi‐output pure‐feedback dynamics. It is assumed that all followers' nonlinearities are heterogeneous and unknown. The proposed containment controller is implemented by using only error surfaces integrated by performance bounding functions and does not require any differential equations for compensating uncertainties and faults. Thus, compared with the previous containment control approaches for multi‐agent systems with unknown non‐affine nonlinearities, the distributed containment control structure is simplified. In addition, it is shown that the proposed control scheme can be applied to the fault‐tolerant containment control problem in the presence of unexpected system and actuator faults, without reconstructing any control structure. It is shown from Lyapunov stability theorem that all followers nearly converge to the dynamic convex hull spanned by the dynamic leaders and the containment control errors are preserved within certain given predefined bounds. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
This note addresses the multi‐input second‐order sliding mode control design for a class of nonlinear multivariable uncertain dynamics. Among the most important peculiarities of the considered control problem, the considered sliding vector variable has a uniform vector relative degree [2,2, … ,2] with respect to the vector control variable, and only the sign of the sliding vector and of its derivative are available for feedback. Additionally, the symmetric part of the state‐dependent control matrix is supposed to be positive definite. Under some further mild restrictions on the uncertain system's dynamics, a control algorithm that realizes a multi‐input version of the ‘twisting’ second‐order sliding mode control algorithm is suggested. Simple controller tuning conditions are derived by means of a constructive Lyapunov analysis, which demonstrates that the suggested control algorithm guarantees the semiglobal asymptotic convergence to the sliding manifold. Simulation results, which confirm the good performance of the proposed scheme and investigate the actual accuracy obtained under the discrete‐time implementation effects, are given. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
This paper is concerned with the leader‐following consensus problem for multi‐agent systems consisting of one stationary leader and multiple cooperative followers, where the controlling effect of each follower depends on its own state. It is noted that the influence of diffusion among followers is taken into account and the system is modeled by reaction‐diffusion equations. With the assumption of the followers' initial states, a linear control protocol is designed. Based on algebraic graph theory, the method of energy estimates, and Sobolev embedding theorem, the sufficient conditions guaranteeing the leader‐following consensus under the proposed control protocol are provided. Numerical examples illustrate the effectiveness of the theoretical results.  相似文献   

5.
To design an rth (r>2) order sliding mode control system, a sliding variable and its derivatives of up to (r ? 1) are in general required for the control implementation. This paper proposes a reduced‐order design algorithm using only the sliding variable and its derivatives of up to (r ? 2) as the extension of the second‐order asymptotic sliding mode control. For a linear time‐invariant continuous‐time system with disturbances, it is found that a high‐order sliding mode can be reached locally and asymptotically by a reduced‐order sliding mode control law if the sum of the system poles is less than the sum of the system zeros. The robust stability of the reduced‐order high‐order sliding mode control system, including the convergence to the high‐order sliding mode and the convergence to the origin is proved by two Lyapunov functions. Simulation results show the effectiveness of the proposed control algorithm. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
This article studies consensus problems of discrete‐time linear multi‐agent systems with stochastic noises and binary‐valued communications. Different from quantized consensus of first‐order systems with binary‐valued observations, the quantized consensus of linear multi‐agent systems requires that each agent observes its neighbors' states dynamically. Unlike the existing quantized consensus of linear multi‐agent systems, the information that each agent in this article gets from its neighbors is only binary‐valued. To estimate its neighbors' states dynamically by using the binary‐valued observations, we construct a two‐step estimation algorithm. Based on the estimates, a stochastic approximation‐based distributed control is proposed. The estimation and control are analyzed together in the closed‐loop system, since they are strongly coupled. Finally, it is proved that the estimates can converge to the true states in mean square sense and the states can achieve consensus at the same time by properly selecting the coefficient in the estimation algorithm. Moreover, the convergence rate of the estimation and the consensus speed are both given by O(1/t). The theoretical results are illustrated by simulations.  相似文献   

7.
This paper proposes a consensus algorithm for continuous‐time single‐integrator multi‐agent systems with relative state‐dependent measurement noises and time delays in directed fixed and switching topologies. Each agent's control input relies on its own information state and its neighbors' information states, which are delayed and corrupted by measurement noises whose intensities are considered a function of the agents' relative states. The time delays are considered time‐varying and uniform. For directed fixed topologies, condition to ensure mean square linear χ‐consensus (average consensus, respectively) are derived for digraphs having spanning tree (balanced digraphs having spanning tree, respectively). For directed switching topologies, conditions on both time delays and dwell time have been given to extend the mean square linear χ‐consensus (average consensus, respectively) of fixed topologies to switching topologies. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, the leader‐following consensus problem of uncertain high‐order nonlinear multi‐agent systems on directed graph with a fixed topology is studied, where it is assumed that the relative states of a follower and its neighbors are immeasurable and only the relative outputs are available. Nonlinear adaptive observers are firstly proposed for each follower to estimate the states of it and its neighbors, and an observer‐based distributed adaptive control scheme is constructed to guarantee that all followers asymptotically synchronize to a leader with tracking errors being semi‐globally uniform ultimate bounded. On the basis of algebraic graph theory and Lyapunov theory, the closed‐loop system stability analysis is conducted. Finally, numerical simulations are presented to illustrate the effectiveness and potential of the proposed new design techniques. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
Proportional‐integral‐derivative (PID) structured controller is the most popular class of industrial control but still could not be appropriately exploited in gain‐scheduling control systems. To gain the practicability and tractability of gain‐scheduling control systems, this paper addresses the gain‐scheduling PID control. The design of such a controller is based on parameterized bilinear matrix inequalities, which are then solved via a bilinear matrix inequality optimization problem of nonconvex optimization. Several computational procedures are developed for its computation. The merit of the developed algorithms is shown through the benchmark examples.  相似文献   

10.
The focus of this paper is on the design of a control architecture of decentralized type for controlling a leader/follower pair of autonomous non‐holonomic vehicles. A fundamental constraint in this trailing control requires that each agent employs local sensor information to process data on the relative position and velocity between its neighbouring vehicles, without relying on global communication with mission control. This constraint poses a challenge in the design of the control system because the reference trajectory to be tracked, which in the case considered in this paper is related to the motion of the leader, is not known a priori. It is shown in the paper that this specific control problem can be approached from the point of view of the internal model paradigm. In particular, once models of the autonomous dynamics of the leader are embedded in a decentralized dynamic controller, the design of the controller can be completed with a robust stabilizer, obtained by using ISS‐gain‐assignment techniques. It is shown that asymptotic convergence of the follower to an arbitrarily small neighbourhood of the desired steady‐state configuration is achieved, despite the presence of possibly large parameter uncertainties, while the motion of each agent remains confined into specified ‘sectors’ to avoid possible collision between neighbouring vehicles during transients. Simulation results are presented to illustrate the design methodology. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
This paper is concerned with consensus problems in directed networks of multiple agents with double‐integrator dynamics. It is assumed that each agent adjusts its state based on the information of its states relative to its neighbors at discrete times and the interaction topology among agents is time‐varying. Both synchronous and asynchronous cases are considered. The synchrony means that each agent's update times, at which it obtains new control signals, are the same as the others', and the asynchrony implies that each agent's update times are independent of the others'. In the synchronous case, the consensus problem is proved to be equivalent to the asymptotic stability problem of a discrete‐time switched system. By analyzing the asymptotic stability of the discrete‐time switched system, it is shown that consensus can be reached if the update time intervals are small sufficiently, and an allowable upper bound of update time intervals is obtained. In the asynchronous case, the consensus problem is transformed into the global asymptotic stability problem of a continuous‐time switched system with time‐varying delays. In virtue of a linear matrix inequality method, it is proved that consensus can be reached if the delays are small enough, and an admissible upper bound of delays is derived. Simulations are provided to illustrate the effectiveness of the theoretical results. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
This paper presents a new iterative learning control (ILC) scheme for linear discrete time systems. In this scheme, the input of the controlled system is modified by applying a semi‐sliding window algorithm, with a maximum length of n + 1, on the tracking errors obtained from the previous iteration (n is the order of the controlled system). The convergence of the presented ILC is analyzed. It is shown that, if its learning gains are chosen proportional to the denominator coefficients of the system transfer function, then its monotonic convergence condition is independent of the time duration of the iterations and depends only on the numerator coefficients of the system transfer function. The application of the presented ILC to control second‐order systems is described in detail. Numerical examples are added to illustrate the results. Copyright © 2011 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

13.
This paper aims to investigate the problem of H output tracking control for a class of switched linear parameter‐varying (LPV) systems. A sufficient condition ensuring the H output tracking performance for a switched LPV system is firstly presented in the format of linear matrix inequalities. Then, a set of parameter and mode‐dependent switching signals are designed, and a family of switched LPV controllers are developed via multiple parameter‐dependent Lyapunov functions to enhance control design flexibility. Even though the H output tracking control problem for each subsystem might be unsolvable, the problem for switched LPV systems is still solved by the designed controllers and the designed switching law. Finally, the effectiveness of the proposed control design scheme is illustrated by its application to an H speed adjustment problem of an aero‐engine. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
This paper aims to investigate the input‐to‐state exponents (IS‐e) and the related input‐to‐state stability (ISS) for delayed discrete‐time systems (DDSs). By using the method of variation of parameters and introducing notions of uniform and weak uniform M‐matrix, the estimates for 3 kinds of IS‐e are derived for time‐varying DDSs. The exponential ISS conditions with parts suitable for infinite delays are thus established, by which the difference from the time‐invariant case is shown. The exponential stability of a time‐varying DDS with zero external input cannot guarantee its ISS. Moreover, based on the IS‐e estimates for DDSs, the exponential ISS under events criteria for DDSs with impulsive effects are obtained. The results are then applied in 1 example to test synchronization in the sense of ISS for a delayed discrete‐time network, where the impulsive control is designed to stabilize such an asynchronous network to the synchronization.  相似文献   

15.
Stability analysis and control for linear periodic time‐delay systems are investigated in this paper. In this framework, a semi‐discretization method is used to develop a mapping of the system response in a finite‐dimensional state space. With the mapping, the stability region and stability boundary can be identified by comparing the maximum absolute value of its eigenvalues to 1. More importantly, an efficient stability criterion is presented for periodic neutral systems. In addition, minimization of the maximum absolute value of the mapping's eigenvalues leads to optimal control gains. The tracking control problem is also discussed. Two numerical examples are given to illustrate the effectiveness of the proposed method.  相似文献   

16.
This paper is focused on the node‐to‐node consensus problem of multiagent systems consisting of general linear node dynamics under directed switching topologies. Specifically, it is assumed that the multiagent systems under consideration have 2 layers, ie, leader layer and follower layer. When uncertainties on the pinning links between the 2 layers exist, the coordination goal is to present some robust control laws, which are distributed such that the states of each follower asymptotically converge to those of its corresponding leader. By using tools from M‐matrix theory and multiple Lyapunov methods, some sufficient criteria are derived to achieve this goal. Finally, 2 simulation examples are performed to validate the effectiveness of the theoretical results.  相似文献   

17.
This paper investigates fault‐tolerant control (FTC) for feedback linearizable systems (FLSs) and its applications. The dynamic effects caused by the actuator faults on the feedback linearized model are firstly analyzed, which reveals that under actuator faults, the control input in the linearized model is affected by uncertain terms. In the framework of model reference control, the first FTC strategy is proposed as a robust controller, which achieves asymptotic tracking control of the FLS under actuator faults. A disadvantage of this strategy is that it relies on explicit information about several parameters in the actuator faults. This requirement is later relaxed by combining the robust FTC strategy with an adaptive technique to generate the adaptive FTC law, which is then improved to alleviate possible chattering of the actuator and estimation drifting of the adaptive parameter. Finally, the proposed FTC strategies are evaluated by reference command tracking control of a pendulum and an air‐breathing hypersonic vehicle under actuator faults. Simulation results demonstrate good tracking performance, which confirms effectiveness of the proposed strategies. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
19.
In this work, the issues of bandwidth enhancement of planar antennas and the relevance of precise and automated response control through numerical optimization have been investigated. Using an example of a planar antenna with parasitic radiator we illustrate possible effects of even minor modifications of the antenna geometry (here, applied to the ground plane) on its reflection performance. In particular, a proper handling of geometry parameters may lead to considerable broadening of the antenna bandwidth. For the sake of computational efficiency, the adjustment of geometry parameters is carried out using surrogate‐based optimization methods exploiting coarse‐discretization EM simulations as the underlying low‐fidelity antenna model. Additionally, suitably defined penalty function allows us to precisely control the maximum in‐band reflection so that sufficient margin to accommodate possible manufacturing tolerances can be achieved. The optimized designs of the two antenna structures considered in this work exhibit over 1.75 GHz (>31%) and 2.15 GHz (>38%) bandwidth, respectively, for the center frequency of 5.6 GHz. Simulation results are validated using measurements of the fabricated prototypes. Comparison with state‐of‐the‐art designs is also provided. © 2016 Wiley Periodicals, Inc. Int J RF and Microwave CAE 26:653–659, 2016.  相似文献   

20.
In this paper, a new second‐order sliding mode output feedback control law is proposed. It amounts to approach the dynamic performance of the twisting algorithm, but the main advantage of this new control method is that it requires only the information of the sliding variable, and not its derivative. A gain adaptation law is also developed for this new control law. Then this control strategy is applied to the position control of an electropneumatic system, and its performance is compared with other two very recent adaptive second‐order sliding mode control laws. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号