首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper studies the node‐to‐node consensus problem for multi‐agent networks possessing a leaders' layer and a followers' layer via the pinning control. In order to realize the consensus and reduce the update frequency of the controller, a suitable event‐triggered mechanism is introduced into the control strategy. Furthermore, the phenomenon of packet loss is considered in the designed controller. Based on the M‐matrix theory and Lyapunov stability theory, this paper presents the sufficient conditions for the node‐to‐node consensus of networks. Meanwhile, it is proved that the Zeno behaviour is excluded. Finally, two numerical simulations are provided to demonstrate the effectiveness of the theoretical results.  相似文献   

2.
This paper is focused on the node‐to‐node consensus problem of multiagent systems consisting of general linear node dynamics under directed switching topologies. Specifically, it is assumed that the multiagent systems under consideration have 2 layers, ie, leader layer and follower layer. When uncertainties on the pinning links between the 2 layers exist, the coordination goal is to present some robust control laws, which are distributed such that the states of each follower asymptotically converge to those of its corresponding leader. By using tools from M‐matrix theory and multiple Lyapunov methods, some sufficient criteria are derived to achieve this goal. Finally, 2 simulation examples are performed to validate the effectiveness of the theoretical results.  相似文献   

3.
This paper studies the consensus problem of data‐sampled multi‐agent systems with Markovian switching topologies. Two different consensus algorithms are considered. By a system transformation, the mean‐square consensus problem of multi‐agent systems is converted into the mean‐square stability problem of Markov jump systems. Necessary and sufficient conditions of mean‐square consensus are obtained. The cone complementary linearization algorithm is used to get the allowable control gain. Simulation examples are given to show the effectiveness of the results. Copyright © 2011 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

4.
In this paper, we consider the consensus problem of discrete‐time multi‐agent systems with multiplicative communication noises. Each agent can only receive information corrupted by noises from its neighbors and/or a reference node. The intensities of these noises are dependent on the relative states of agents. Under some mild assumptions of the noises and the structure of network, consensus is analyzed under a fixed topology, dynamically switching topologies and randomly switching topologies, respectively. By combining algebraic graph theory and martingale convergence theorem, sufficient conditions for mean square and almost sure consensus are given. Further, when the consensus is achieved without a reference, it is shown that the consensus point is a random variable with its expectation being the average of the initial states of the agents and its variance being bounded. If the multi‐agent system has access to the state of the reference, the state of each agent can asymptotically converge to the reference. Numerical examples are given to illustrate the effectiveness of our results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
The bipartite consensus problem is investigated for double‐integrator multi‐agent systems in the presence of measurement noise. A distributed protocol with time‐varying consensus gain is proposed. By using tools of state transition matrix and algebraic graph theory, necessary and sufficient conditions for the designed protocol to be a mean square bipartite linear χ‐consensus protocol are given. It is shown that the signed digraph being structurally balanced and having a spanning tree are not only sufficient, but also necessary for bipartite consensus. Furthermore, the protocol is proved to be a mean square bipartite average consensus protocol if the signed graph is weight balanced.  相似文献   

6.
This paper studies the consensus problem of second‐order discrete‐time multi‐agent systems with relative‐state‐dependent noises. Directed switching topologies are considered. Firstly, for a kind of switching topology with each digraph containing a spanning tree, we give a weak consensus result on the basis of the mode‐dependent average dwell time method. Then, if all digraphs in a switching topology are strongly connected and the corresponding Laplacian matrices have a common left eigenvector for zero eigenvalue, we prove that the mean square and almost sure consensus can always be guaranteed for an arbitrary switching sequence with some constant distributed control gains, and we also give the statistic properties of the final consensus points. Numerical examples are presented to illustrate the effectiveness of our results. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
This paper addresses the distributed observer‐based consensus problem of second‐order multi‐agent systems via sampled data. Firstly, for the case of fixed topology, a velocity‐independent distributed control law is proposed by designing a distributed observer to estimate the unavailable velocity, then a sufficient and necessary condition of consensus on design parameters and sampling period is obtained by using the matrix analysis method. Secondly, for the case of stochastically switching topology, a sufficient and necessary condition of mean square consensus is also proposed and proven, and an algorithm is provided to design the parameters in the consensus protocol. Two simulation examples are given to illustrate the effectiveness of the proposed consensus algorithms. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
This paper studies mean‐field games for multiagent systems with control‐dependent multiplicative noises. For the general systems with nonuniform agents, we obtain a set of decentralized strategies by solving an auxiliary limiting optimal control problem subject to consistent mean‐field approximations. The set of decentralized strategies is further shown to be an ε‐Nash equilibrium. For the integrator multiagent systems, we design a set of ε‐Nash strategies by exploiting the convexity property of the limiting problem. It is shown that under the mild conditions, all the agents achieve mean‐square consensus.  相似文献   

9.
This paper performs a consensus analysis of leader‐following multi‐agent systems with multiple double integrators in the framework of sampled‐data control. Both single‐leader and multiple‐leader scenarios are considered under the assumption of networks with detectable position‐like state information. The coordination tasks are accomplished by a given protocol with the robustness against the change of sampling periods. The sampling periods can be chosen to be of an arbitrary fixed length or large time‐varying length. Under the proposed protocol, we achieve two objectives: (i) in the single leader‐subgroup case, all followers reach an agreement with leaders on states asymptotically and (ii) in the multiple leader‐subgroup case, each follower converges to some convex combination of the final states of all leaders. It is shown that the final state configuration of the convex combination is uniquely determined by the underlying interaction topology, which can be any weakly connected graph. Compared with the existing results on leader‐following networks, the consensus problem and the containment problem are solved in a unified framework with large sampling periods. Some numerical experiments are conducted to illustrate the dynamic behavior of all agents with this protocol. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, a novel consensus protocol for second‐order multi‐agent systems is elegantly designed, and it relaxes the common requirement of the velocity information of the agents. An interesting consensus criterion is explicitly derived in terms of the proposed cooperation law provided that the dynamical equation for each agent is linear. As an extension, the proposed cooperation rule is further extended to a general scenario, where the coupling weights characterizing the relationships among the neighboring agents are time‐varying. Accordingly, two distributed cooperative algorithms (node/edge‐based scheme) are explicitly designed. Moreover, we study the case of network with switching communication setting. It shows that edge‐based law is capable with the time‐varying topology, while the node‐based scheme is not. In addition, the proposed coordination strategies are applied to the tracking problem as well. Finally, these obtained consensus results are well supported in the light of the pendulum models. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
This paper studies a distributed coordinated control problem for a class of linear multi‐agent systems subject to two types of attacks. The problem boils down to how to achieve secure consensus tracking for multi‐agent systems with connected and disconnected (paralyzed) directed switching topologies caused by two types of attacks. The attacks on the edges instead of nodes lead to the loss of security performance. Two cases are studied in this paper. First, under only a class of connectivity‐maintained attacks, sufficient conditions are derived to achieve secure consensus tracking in mean‐square. Second, when the multi‐agent systems are further subject to a class of connectivity‐broken attacks, novel sufficient conditions are further obtained to ensure secure consensus tracking with a specified convergence rate by virtue of the idea of average dwell time switching between some stable and unstable subsystems. Three numerical simulations are finally given to illustrate the theoretical analysis. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
This paper studies the synchronization of general linear multi‐agent systems with measurement noises in mean square. It shows that the conventional consensus protocol is efficient and robust to the additive and multiplicative measurement noises in mean square. For the additive measurement noises which are independent of the relative‐states, it shows that the multi‐agent systems can achieve synchronization in practical mean square. For the multiplicative measurement noises which are dependent of the relative‐states, it shows that the multi‐agent systems can achieve synchronization in (strict) mean square. Furthermore, the new consensus protocol is better than the conventional one at some specific situations, i.e., the multi‐agent systems with additive measurement noises can also achieve synchronization in (strict) mean square. Numerical simulations are also provided and the results show highly consistent with the theoretical results.  相似文献   

13.
This paper proposes a consensus algorithm for continuous‐time single‐integrator multi‐agent systems with relative state‐dependent measurement noises and time delays in directed fixed and switching topologies. Each agent's control input relies on its own information state and its neighbors' information states, which are delayed and corrupted by measurement noises whose intensities are considered a function of the agents' relative states. The time delays are considered time‐varying and uniform. For directed fixed topologies, condition to ensure mean square linear χ‐consensus (average consensus, respectively) are derived for digraphs having spanning tree (balanced digraphs having spanning tree, respectively). For directed switching topologies, conditions on both time delays and dwell time have been given to extend the mean square linear χ‐consensus (average consensus, respectively) of fixed topologies to switching topologies. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
This paper is concerned with the problem of consensus in directed networks of multiple agents with intrinsic nonlinear dynamics and sampled‐data information. A new protocol is induced from a class of continuous‐time linear consensus protocols by implementing data‐sampling technique and a zero‐order hold circuit. On the basis of a delayed‐input approach, the sampled‐data multi‐agent system is converted to an equivalent nonlinear system with a time‐varying delay. Theoretical analysis on this time‐delayed system shows that consensus with asymptotic time‐varying velocities in a strongly connected network can be achieved over some suitable sampled‐data intervals. A multi‐step procedure is further presented to estimate the upper bound of the maximal allowable sampling intervals. The results are then extended to a network topology with a directed spanning tree. For the case of the topology without a directed spanning tree, it is shown that the new protocol can still guarantee the system to achieve consensus by appropriately informing a fraction of agents. Finally, some numerical simulations are presented to demonstrate the effectiveness of the theoretical results and the dependence of the upper bound of maximal allowable sampling interval on the coupling strength. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
This paper introduces the motion‐planning approaches to solve the distributed consensus problems via sampling measurements. First, for first‐order multiagent systems, a class of sampled‐data–based algorithms are developed with arbitrary sampling periods, which solve the asymptotic consensus problem under both directed fixed and random switching topologies. Then, a new kind of distributed consensus algorithms is designed based on sampling measurements for second‐order multiagent systems. Under both the directed fixed and periodical switching topologies, asymptotic consensus problems of second‐order multiagent systems can be solved by using the proposed algorithms. Compared with existing continuous‐time consensus algorithms, one of remarkable advantages of proposed algorithms is that the sampling periods, communication topologies, and control gains are decoupled and can be separately designed, which relaxes many restrictions in controller designs. Finally, some numerical examples are given to illustrate the effectiveness of the analytical results.  相似文献   

16.
The consensus problem is investigated in this paper for a class of multi‐agent systems with general linear node dynamics and directed communication topologies. A new distributed observer‐type consensus protocol is designed based only on the relative output measurements of neighboring agents. Compared with existing observer‐type protocols, the one presented here does not require information about the relative states of the observers. Tools from small gain theory and matrix analysis, some sufficient conditions are obtained for achieving consensus in such multi‐agent systems where the underlying network topology contains a directed spanning tree. Finally, some numerical examples including an application in low‐Earth‐orbit satellite formation flying are provided to illustrate the theoretical results.  相似文献   

17.
In this study, a two‐node‐connected star problem (2NCSP) is introduced. We are given a simple graph and internal and external costs for each link of the graph. The goal is to find the minimum‐cost spanning subgraph, where the core is two‐node‐connected and the remaining external nodes are connected to the core. First, we show that the 2NCSP belongs to the class of NP‐hard computational problems. Therefore, a greedy randomized adaptive search procedure (GRASP) heuristic is developed, enriched with a variable neighborhood descent (VND). The neighborhood structures include exact integer linear programming models to find the best paths and two‐node‐connected replacements, as well as a shaking operation in order to prevent being trapped in a local minima. The ring star problem (RSP) represents a relevant model in network optimization, where the core is a ring instead of an arbitrary two‐node‐connected graph. We contrast our GRASP/VND methodology with a previous reference work on the RSP in order to highlight the effectiveness of our heuristic. The heuristic is competitive, and the best results produced for several instances so far are under study. In this study, a discussion of the results and trends for future work are provided.  相似文献   

18.
This paper deals with the consensus problem of second‐order multi‐agent systems with sampled data. Because of the unavailable velocity information, consensus problem is studied only by using the sampled position information. The final consensus states of multi‐agent system are given. And a necessary and sufficient consensus condition is provided, which depends on the parameters of sampling interval, eigenvalues of Laplacian matrix, and coupling strengths. Then, the case that both the sampled position and velocity information can be obtained is discussed. On the basis of introducing a time‐varying piecewise‐continuous delay and proposing a novel time‐dependent Lyapunov functional, the sufficient consensus condition is presented, and the upper bound of sampling interval can be estimated. Simulation examples are provided finally to demonstrate the effectiveness of the proposed design methods. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
This paper is concerned with quantitative analysis and synthesis for a networked control system under simultaneous consideration of non‐uniformly distributed packet dropouts, interval time‐varying sampling periods and network‐induced delays. A new packet dropout separation method is proposed to separate packet dropouts from the lump sum of network‐induced delays and packet dropouts. An interval time‐varying sampling period approach, which is more general than a switched sampling period approach, is presented to model the variation of the sampling period. Then a packet dropout decomposition‐based Lyapunov functional is constructed to drive some stability criteria. Based on these stability criteria, a state feedback controller is designed to asymptotically stabilize the networked system in the sense of mean‐square. Numerical examples are given to illustrate the effectiveness of the obtained results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
This paper investigates the finite‐time consensus problem for multi‐agent systems with second‐order individual dynamics under switching topologies. A distributed continuous‐time protocol is designed to guarantee finite‐time consensus for homogeneous agents without predetermined leaders, i.e., it ensures agents asymptotically converge to an average consensus within finite time, even if the interaction topology among them is time‐varying but stepwise jointly‐connected. In particular, it introduces a distributed continuous‐time protocol to reach consensus in finite time and reduce the chattering together. Finally, the simulation results are also given to validate the proposed approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号