首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is well known that multi‐input, multi‐output nature of nonlinear system and generalized exosystem have posed some challenges to output regulation theory. Recently, the global robust output regulation problem for a class of multivariable nonlinear system subject to a linear neutrally stable exosystem has been studied. It has been shown that a linear internal model‐based state feedback control law can lead to the solution of previous problem. In this paper, we will further study the global robust output regulation problem of the system subject to a nonlinear exosystem. By utilizing nonlinear internal model design and decomposing the multi‐input control problem into several single‐input control problems, we will solve the problem by recursive control law design. The theoretical result is applied to the non‐harmonic load torque disturbance rejection problem of a surface‐mounted permanent magnet synchronous motor. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
We study in this paper the problem of iterative feedback gains auto‐tuning for a class of nonlinear systems. For the class of input–output linearizable nonlinear systems with bounded additive uncertainties, we first design a nominal input–output linearization‐based robust controller that ensures global uniform boundedness of the output tracking error dynamics. Then, we complement the robust controller with a model‐free multi‐parametric extremum seeking control to iteratively auto‐tune the feedback gains. We analyze the stability of the whole controller, that is, the robust nonlinear controller combined with the multi‐parametric extremum seeking model‐free learning algorithm. We use numerical tests to demonstrate the performance of this method on a mechatronics example. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
The class of strict-feedback systems enjoys special properties that make it similar to linear systems. This paper proves that such a class is equivalent, under a change of coordinates, to the wider class of feedback linearisable systems with multiplicative input, when the multiplicative terms are functions of the measured variables only. We apply this result to the control problem of feedback linearisable nonlinear MIMO systems with input and/or output delays. In this way, we provide sufficient conditions under which a separation result holds for output feedback control and moreover a predictor-based controller exists. When these conditions are satisfied, we obtain that the existence of stabilising controllers for arbitrarily large delays in the input and/or the output can be proved for a wider class of systems than previously known.  相似文献   

4.
In this paper, we study the cooperative robust output regulation problem for discrete‐time linear multi‐agent systems with both communication and input delays by a distributed internal model approach. We first introduce the distributed internal model for discrete‐time multi‐agent systems with both communication and input delays. Then, we define the so‐called auxiliary system and auxiliary augmented system. Finally, we solve our problem by showing, under some standard assumptions, that if a distributed state feedback control or a distributed output feedback control solves the robust output regulation problem of the auxiliary system, then the same control law solves the cooperative robust output regulation problem of the original multi‐agent systems.  相似文献   

5.
This paper addresses a robust control approach for a class of input–output linearizable nonlinear systems with uncertainties and modeling errors considered as unknown inputs. As known, the exact feedback linearization method can be applied to control input–output linearizable nonlinear systems, if all the states are available and modeling errors are negligible. The mentioned two prerequisites denote important problems in the field of classical nonlinear control. The solution approach developed in this contribution is using disturbance rejection by applying feedback of the uncertainties and modeling errors estimated by a specific high‐gain disturbance observer as unknown inputs. At the same time, the nonmeasured states can be calculated from the estimation of the transformed system states. The feasibility and conditions for the application of the approach on mechanical systems are discussed. A nonlinear multi‐input multi‐output mechanical system is taken as a simulation example to illustrate the application. The results show the robustness of the control design and plausible estimations of full‐rank disturbances.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, we study the global robust output regulation problem for a class of multivariable nonlinear systems. The problem is first converted into a stabilization problem of an augmented system composed of the original plant and an internal model. The augmented system is a multi‐input system containing both dynamic uncertainty and time‐varying static uncertainty. By decomposing the multi‐input control problem into several single‐input control problems, we will solve the problem by solving several single‐input control problems via a recursive approach utilizing the changing supply function technique. The theoretical result is applied to the speed tracking control and load torque disturbance rejection problem of a surface‐mounted permanent magnet synchronous motor. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
The cooperative output regulation of a linear multi‐agent system can be viewed as a generalization of the leader‐following consensus problem and was studied recently for the case where the system uncertain parameters vary in a sufficiently small neighborhood of their nominal value. This case was handled by the internal model design which converts the problem into a simultaneous eigenvalue placement problem of an augmented multi‐agent system. In this paper, we further consider the cooperative robust output regulation problem for a class of minimum phase linear multi‐agent systems in the sense that the controller allows the system uncertain parameters to vary in an arbitrarily prescribed compact subset. For this purpose, we introduce a new type of internal model that allows the cooperative robust output regulation problem of the given plant to be converted into a robust stabilization problem of an augmented multi‐agent system. We then solve our problem by combining a simultaneous high‐gain state feedback control technique and a distributed high‐gain observer technique. A special case of our result leads to the solution of the leader‐following robust consensus problem for a class of uncertain multi‐agent systems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, we consider a class of MIMO nonlinear systems with fast time‐varying parametric uncertainties. First, the tracking problem of general nonlinearly time‐varyingly parameterized systems is solved. Then, a Lyapunov‐based singularity free adaptive controller is proposed for the considered system. Specifically, an estimation approach with a proportional plus integral adaptation scheme is utilized to update the estimations of the unknown parameters under a mild assumption that the signs of the leading minors of the input gain matrix are known. The asymptotic stability is achieved with full state feedback. Furthermore, we design an output feedback controller by utilizing a standard high‐gain observer and achieve uniformly ultimately bounded convergence. Simulation examples illustrate the effectiveness of the proposed methods.  相似文献   

9.
In this paper, output‐feedback control strategies are proposed for lower‐triangular nonlinear nonholonomic systems in any prescribed finite time. Specifically, by employing the input‐state–scaling technique, the controlled systems are firstly converted into lower‐triangular nonlinear systems, which makes it possible to study such systems using the high‐gain technique. Then, by introducing a scaling of the state by a function that grows unbounded toward the terminal time and proposing a high‐gain observer–prescribed finite time recovering the system states, the output‐feedback regulation control problem in any prescribed finite time is firstly achieved for nonlinear nonholonomic systems with unknown constant incremental rate. Moreover, by designing another time‐varying high gain, the output‐feedback stabilization control problem in any prescribed finite time is then achieved for nonlinear nonholonomic systems with a time‐varying incremental rate. Finally, a numerical example is introduced to show the effectiveness of proposed control strategies.  相似文献   

10.
研究一类多输入多输出(MIMO)非线性时变系统的降维状态观测器设计问题,提出了一种非线性降维状态观测器设计方案,并从理论上证明了状态观测误差的指数收敛性,其中设计的降维状态观测器具有收敛速度可调的特性,最后给出了数值算例,仿真结果表明了本文方法的有效性。  相似文献   

11.
The robust servomechanism problem (alternatively, output regulation problem) of the class of nonlinear systems in lower triangular form has been extensively studied in recent years. The semi‐global solution was first given by either state feedback or output feedback. The global solution by state feedback was given very recently. However, the global solution by output feedback has long been an open problem. In this paper, we present a set of solvability conditions of the global robust servomechanism problem for this class of nonlinear systems by output feedback.  相似文献   

12.
This paper addresses the problem of using output feedback to globally control a class of nonlinear systems whose output functions are not precisely known. First, for the nominal linear system, we design a homogeneous state compensator without requiring precise information of the output function, and construct a nonlinear stabilizer with adjustable coefficients by using the generalized adding a power integrator technique. Then based on the homogeneous domination approach, a scaling gain is introduced into the proposed output feedback controller, which can be used by tuning the scaling gain to solve: (i) the problem of global output feedback stabilization for a class of upper‐triangular systems; and (ii) the problem of global practical output tracking for a class of lower‐triangular systems. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
The problem addressed is the linearization of multi‐input multi‐output (MIMO) nonlinear systems by a generalized state coordinates transformation and generalized input–output injection, in order to design an observer. This observer will have linear error dynamics. The goal is to bring together two observers design approaches: a structural one and a numerical one. Necessary and sufficient conditions for the existence of a linearizing generalized state transformation are obtained by an algebraic way and without computing the input–output differential equations. The main result tests integrability conditions of differential one‐forms derived from the state space representation and is applicable to a large subclass of nonlinear systems. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

14.
This paper considers the problem of output feedback stabilization for a class of stochastic feedforward nonlinear systems with input and state delay. Under a set of coordinate transformations, we first design a linear output feedback controller for a nominal system. Then, with the aid of feedback domination technique and an appropriate Lyapunov–Krasovskii functional, it is proved that the proposed linear output feedback controller can drive the closed‐loop system globally asymptotically stable in probability. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
This paper considers semi‐global robust output regulation problem for a class of singular nonlinear systems whose algebraic equations are not precisely known. Since the algebraic equations are not known, the output regulation problem of singular nonlinear systems cannot be solved by directly reducing the singular nonlinear system into a normal nonlinear system. Based on internal model principle, we convert the robust output regulation problem of singular nonlinear systems into a robust stabilization problem of an augmented singular nonlinear system. The augmented singular nonlinear system is also with unknown algebraic equations. However, without transforming the singular nonlinear system into a normal nonlinear system, it is shown that the augmented singular nonlinear system can be semi‐globally stabilized by a high gain output feedback control law under some reasonable assumptions. Moreover, the semi‐global stabilization control law of the augmented singular nonlinear systems also solves the semi‐global robust output regulation problem of the original singular nonlinear system.  相似文献   

16.
This paper studies the problem of output regulation for a class of switched nonlinear systems. Sufficient conditions for the problem to be solved are presented in terms of the average dwell‐time scheme. These conditions are obtained based on full information feedback laws and error feedback laws, respectively. The results extend the output regulation theory for non‐switched nonlinear systems to switched nonlinear systems. A simulation example also shows the validity of the results.Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
A necessary and sufficient condition is derived for the solvability of the disturbance decoupling problem by a pure shift dynamic compensator. It corrects previously obtained results for multi‐input multi‐output (MIMO) systems. Also, necessary and sufficient conditions are given for the solvability of the problem by a dynamic compensator for single input single output (SISO) systems.  相似文献   

18.
In this paper, distributed leader–follower control algorithms are presented for linear multi‐agent systems based on output regulation theory and internal model principle. By treating a leader to be followed as an exosystem, the proposed framework can be used to generalize existing multi‐agent coordination solutions to allow the identical agents to track an active leader with different dynamics and unmeasurable variables. Moreover, the obtained results for multi‐agent coordination control are an extension of previous work on centralized and decentralized output regulation to a distributed control context. Necessary and sufficient conditions for the distributed output regulation problem are given. Finally, distributed output regulation of some classes of multi‐agent systems with switching interconnection topologies are discussed via both static and dynamic feedback. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Existing results for output regulation of singular nonlinear systems via normal output feedback control require the normalizability assumption. In this paper, we will show that, for a large class of singular nonlinear systems, it is possible to construct a normal output feedback control to solve the regulation problem without the normalizability assumption. The major result is illustrated by an example.  相似文献   

20.
In this paper, adaptive output feedback control is presented to solve the stabilization problem of nonholonomic systems in chained form with strong nonlinear drifts and uncertain parameters using output signals only. The objective is to design adaptive nonlinear output feedback laws which can steer the closed‐loop systems to globally converge to the origin, while the estimated parameters remain bounded. The proposed systematic strategy combines input‐state scaling with backstepping technique. Motivated from a special case, adaptive output feedback controllers are proposed for a class of uncertain chained systems. The simulation results demonstrate the effectiveness of the proposed controllers. Copyright © 2009 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号