首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, the gain‐scheduled control problem is addressed by using probability‐dependent Lyapunov functions for a class of discrete‐time stochastic delayed systems with randomly occurring sector nonlinearities. The sector nonlinearities are assumed to occur according to a time‐varying Bernoulli distribution with measurable probability in real time. The multiplicative noises are given by means of a scalar Gaussian white noise sequence with known variances. The aim of the addressed gain‐scheduled control problem is to design a controller with scheduled gains such that, for the admissible randomly occurring nonlinearities, time delays and external noise disturbances, the closed‐loop system is exponentially mean‐square stable. Note that the designed gain‐scheduled controller is based on the measured time‐varying probability and is therefore less conservative than the conventional controller with constant gains. It is shown that the time‐varying controller gains can be derived in terms of the measurable probability by solving a convex optimization problem via the semi‐definite programme method. A simulation example is exploited to illustrate the effectiveness of the proposed design procedures. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
This paper presents a robust control approach to solve the stability and stabilization problems for networked control systems (NCSs) with short time‐varying delays. A new discrete‐time linear uncertain system model is proposed to describe the NCS, and the uncertainty of the network‐induced delay is transformed into the uncertainty of the system matrix. Based on the obtained uncertain system model, a sufficient BIBO stability condition for the closed‐loop NCS is derived by applying the small gain theorem. The obtained stability condition establishes a quantitative relation between the BIBO stability of the closed‐loop NCS and two delay parameters, namely, the delay upper bound and the delay variation range bound. Moreover, design procedures for the state feedback stabilizing controllers are also presented. An illustrative example is provided to demonstrate the effectiveness of the proposed method. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, the model predictive control problem is investigated for a class of discrete‐time systems with random delay and randomly occurring nonlinearity. The randomly occurring nonlinearity, which describes the phenomena of a class of nonlinear disturbances occurring in a random way, is modeled according to a Bernoulli distributed white sequence with a known conditional probability. Moreover, the random delay is governed by a discrete‐time finite‐state Markov chain. The approach of delay fractioning is applied to the controller synthesis. It is shown that the proposed model predictive controller guarantees the stochastic stability of the closed‐loop system. Finally, a numerical simulation is given to illustrate the effectiveness of the proposed method.  相似文献   

4.
In this paper, the security‐guaranteed filtering problem is studied for a class of nonlinear stochastic discrete time‐delay systems with randomly occurring sensor saturations (ROSSs) and randomly occurring deception attacks (RODAs). The nonlinearities in systems satisfy the sector‐bounded conditions, and the time‐varying delays are unknown with given lower and upper bounds. A novel measurement output model is proposed to reflect both the ROSSs and the RODAs. A new definition is put forward on the security level with respect to the noise intensity, the energy bound of the false signals, the energy of the initial system state, and the desired security degree. We aim at designing a filter such that, in the presence of ROSSs and RODAs, the filtering error dynamics achieves the prescribed level of security. By using the stochastic analysis techniques, a sufficient condition is first derived under which the filtering error system is guaranteed to have the desired security level, and then, the filter gain is designed by solving a linear matrix inequality with nonlinear constraints. Finally, a numerical example is provided to demonstrate the feasibility of the proposed filtering scheme. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
This paper addresses the passivity‐based control problem for a class of time‐varying delay systems subject to nonlinear actuator faults and randomly occurring uncertainties via fault‐tolerant controller. More precisely, the uncertainties are described in terms of stochastic variables, which satisfies Bernoulli distribution, and the existence of actuator faults are assumed not only linear but also nonlinear, which is a more general one. The main objective of this paper is to design a state feedback‐reliable controller such that the resulting closed‐loop time‐delay system is stochastically stable under a prescribed mixed and passivity performance level γ>0 in the presence of all admissible uncertainties and actuator faults. Based on Lyapunov stability method and some integral inequality techniques, a new set of sufficient conditions is obtained in terms of linear matrix inequality (LMI) constraints to ensure the asymptotic stability of the considered system. Moreover, the control design parameters can be computed by solving a set of LMI constraints. Finally, two examples including a quarter‐car model are provided to show the efficiency and usefulness of the proposed control scheme. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
This paper considers the problems of robust non‐fragile stochastic stabilization and H control for uncertain time‐delay stochastic systems with time‐varying norm‐bounded parameter uncertainties in both the state and input matrices. Attention is focused on the design of memoryless state feedback controllers which are subject to norm‐bounded uncertainties. For both the cases of additive and multiplicative controller uncertainties, delay‐independent sufficient conditions for the solvability of the above problems are obtained. The desired state feedback controller can be constructed by solving a certain linear matrix inequality.  相似文献   

7.
This paper focuses on the problem of finite‐time H control for one family of discrete‐time uncertain singular Markovian jump systems with sensor fault and randomly occurring nonlinearities through a sliding mode approach. The failure of sensor is described as a general and practical continuous fault model. Nonlinear disturbance satisfies the Lipschitz condition and occurs in a probabilistic way. Firstly, based on the state estimator, the discrete‐time close‐loop error system can be constructed and sufficient criteria are provided to guarantee the augment system is sliding mode finite‐time boundedness and sliding mode H finite‐time boundedness. The sliding mode control law is synthesized to guarantee the reachability of the sliding surface in a short time interval, and the gain matrices of state feedback controller and state estimator are achieved by solving a feasibility problem in terms of linear matrix inequalities through a decoupling technique. Finally, numerical examples are given to illustrate the effectiveness of the proposed method.  相似文献   

8.
The problem of reliable sampled‐data control design for uncertain singular fuzzy system with randomly occurring delay and nonlinear actuator failures is studied in this paper. The fault model is composed of two parts in which, linear part stands for the gain missing of actuators that vary with the true control input linearly, while the nonlinear part indicates some bounded nonlinear variation. Moreover, the time delay which encountering in the proposed controller is assumed to be randomly varying and satisfies Bernoulli distributed probabilities. By constructing a proper time‐dependent Lyapunov functional, some novel sufficient conditions are derived in terms of linear matrix inequalities (LMIs) for the existence of robustly stochastically stabilizing reliable sampled‐data controllers. Two simulation examples are given to demonstrate the effectiveness of the proposed method.  相似文献   

9.
This paper studies the non‐fragile Guaranteed Cost Control (GCC) problem via memoryless state‐feedback controllers for a class of uncertain discrete time‐delay linear systems. The systems are assumed to have norm‐bounded, time‐varying parameter uncertainties in the state, delay‐state, input, delay‐input and state‐feedback gain matrices. Existence of the guaranteed cost controllers are related to solutions of some linear matrix inequalities (LMIs). The non‐fragile GCC state‐feedback controllers are designed based on a convex optimization problem with LMI constraints to minimize the guaranteed cost of the resultant closed‐loop systems. Numerical examples are given to illustrate the design methods.  相似文献   

10.
This paper is concerned with robust quantized output feedback control problems for uncertain discrete‐time systems with time‐varying delay and saturation nonlinearity. It is assumed that the quantizer is of the saturating type. A new framework for the local boundedness stabilization of quantized feedback systems is developed. Attention is focused on finding a quantized static output feedback controller such that all trajectories of the resulting closed‐loop system starting from an admissible initial basin converge to a bounded region strictly within the initial basin. A quantized feedback controller is proposed, which comprises output feedback and the exogenous signal parts. Simulation examples are given to illustrate the effectiveness and advantage of the proposed methods. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
The concept of input‐to‐state stability (ISS) is important in robust control, as the state of an ISS system subject to disturbances can be stably regulated to a small region around the origin. In this study, the ISS property of the rigid‐body attitude system with quaternion representation is thoroughly investigated. It has been known that the closed loop with continuous controllers is not ISS with respect to arbitrarily small external disturbances. To deal with this problem, hybrid proportional‐derivative controllers with hysteresis are proposed to render the attitude system ISS. The controller is far from new, but it is investigated in a new aspect. To illustrate the applications of the results about ISS, 2 new robust hybrid controllers are designed. In the case of large bounded time‐varying disturbances, the hybrid proportional‐derivative controller is designed to incorporate a saturated high‐gain feedback term, and arbitrarily small ultimate bounds of the state can be obtained; in the case of constant disturbances, a hybrid adaptive controller is proposed, which is robust against small estimate error of inertia matrix. Finally, simulations are conducted to illustrate the effectiveness of the proposed control strategies.  相似文献   

12.
This paper is concerned with the state estimation problem for two‐dimensional (2D) complex networks with randomly occurring nonlinearities and randomly varying sensor delays. To describe the fact that measurement delays may occur in a probabilistic way, the randomly varying sensor delays are introduced in the delayed sensor measurements. The randomly occurring nonlinearity, on the other hand, is included to account for the phenomenon of nonlinear disturbances appearing in a random fashion that is governed by a Bernoulli distributed white sequence with known conditional probability. The stochastic Brownian motions are also considered, which enter into not only the coupling terms of the complex networks but also the measurements of the output systems. Through available actual network measurements, a state estimator is designed to estimate the true states of the considered 2D complex networks. By utilizing an energy‐like function, the Kronecker product and some stochastic analysis techniques, several sufficient criteria are established in terms of matrix inequalities under which the 2D estimation error dynamics is globally asymptotically stable in the mean square. Furthermore, the explicit expression of the estimator gains is also characterized. Finally, a numerical example is provided to demonstrate the effectiveness of the design method proposed in this paper. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
This paper proposes a method for robust state feedback controller design of networked control systems with interval time‐varying delay and nonlinearity. The key steps in the method are to construct an improved interval‐delay‐dependent Lyapunov functional and to introduce an extended Jessen's inequality. Neither free weighting nor model transformation is employed in the derivation of system stability criteria. It is shown that the maximum allowable bound on the nonlinearity could be computed through solving a constrained convex optimization problem; and the maximum allowable delay bound and the feedback gain of a memoryless controller could be derived by solving a set of linear matrix inequalities. Numerical examples are given to demonstrate the effectiveness of the proposed method. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
This paper deals with the synchronisation problem for an array of coupled complex discrete-time networks with the presence of randomly occurring information. The time-varying delays, parameter uncertainties and nonlinearities enter into the system in a random way and such randomly occurring time-delays, randomly occurring uncertainties and randomly occurring sector-like nonlinearities obey certain mutually uncorrelated Bernoulli-distributed white-noise sequences. By employing direct delay decomposition approach and constructing suitable Lyapunov–Krasovskii functional, sufficient conditions are established to ensure the synchronisation criteria for the complex networks with randomly occurring information in terms of linear matrix inequalities. Finally, in numerical examples, synchronisation of Barabàsi Albert scale-free networks and chaotic synchronisation of Lorenz system are rendered to exemplify the effectiveness and applicability of the proposed results.  相似文献   

15.
The control algorithm based on the uncertainty and disturbance estimator (UDE) is a robust control strategy and has received wide attention in recent years. In this paper, the two‐degree‐of‐freedom nature of UDE‐based controllers is revealed. The set‐point tracking response is determined by the reference model, whereas the disturbance response and robustness are determined by the error feedback gain and the filter introduced to estimate the uncertainty and disturbances. It is also revealed that the error dynamics of the system is determined by two filters, of which one is determined by the error feedback gain and the other is determined by the filter introduced to estimate the uncertainty and disturbances. The design of these two filters are decoupled in the frequency domain. Moreover, after introducing the UDE‐based control, the Laplace transform can be applied to some time‐varying systems for analysis and design because all the time‐varying parts are lumped into a signal. It has been shown that, in addition to the known advantages over the time‐delay control, the UDE‐based control also brings better performance than the time‐delay control under the same conditions. Design examples and simulation results are given to demonstrate the findings. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
曹慧超  李炜 《控制与决策》2013,28(12):1874-1883

针对存在时变时延和丢包的不确定网络化控制系统(NCS), 同时考虑执行器饱和、控制器参数摄动以及非线性扰动等约束, 研究执行器发生结构性失效故障时系统的鲁棒容错多约束控制问题. 基于时滞依赖Lyapunov 方法和容错吸引域定义, 采用状态反馈控制策略推证出了闭环故障不确定网络化控制系统稳定的少保守性不变集充分条件, 并给出了非脆弱鲁棒容错控制器的设计方法以及最大容错吸引域的估计. 仿真算例验证了所述方法的可行性和有效性.

  相似文献   

17.
In this paper, the H output feedback control problem for a class of stochastic discrete‐time systems with randomly occurring convex‐bounded uncertainties and channel fadings is investigated. A sequence of mutually independent random variables with known probabilistic distributions are utilized to describe the randomness that convex‐bounded uncertainties appear in practical systems. The measurements with channel fadings are given by a stochastic Rice fading model which is regulated by a set of random variables with certain probability density functions. The purpose of this paper is to design an output feedback controller such that the closed‐loop control system is asymptotically stable with a prescribed H performance level. The less conservative results are obtained by employing the stochastic Lyapunov technique. Numerical examples are presented to illustrate effectiveness of the proposed approach.  相似文献   

18.
This paper focuses on the problems of asymptotic stability and finite‐time stability (FTS) analysis, along with the state feedback controller design for networked control systems (NCSs) with consideration of both network‐induced delay and packet dropout. The closed‐loop NCS is modeled as a discrete‐time linear system with a time‐varying, bounded state delay. Sufficient conditions for the asymptotic stability and the FTS of the closed‐loop NCS are provided, respectively. Based on the stability analysis results, a mixed controller design method, which guarantees the asymptotic stability of the closed‐loop NCS in the usual case and the FTS of the closed‐loop NCS in the unusual case (that is, in some particular time intervals, large state delay occurs), is presented. A numerical example is provided to illustrate the effectiveness of the proposed mixed controller design method.  相似文献   

19.
This paper is concerned with the reliable guaranteed-cost control problem for a class of time-varying networked systems with randomly occurring actuator failures and fading performance output. The randomly occurring actuator failure, which describes the phenomenon of the actuator failure appearing in a random way, is modelled by a Bernoulli distributed white sequence with a known conditional probability. The fading performance output is characterized by a random variable obeying any discrete-time probability distribution over a known interval. The main purpose is to design a reliable controller over a given finite horizon such that, an optimized upper bound of the predefined quadratic performance index is guaranteed for the addressed systems in the presence of both the randomly occurring actuator failures and the fading performance output. It is shown that the desired controller gain can be obtained in terms of the solution to a Riccati-like difference equation. A numerical example is provided to illustrate the feasibility and effectiveness of the proposed control scheme.  相似文献   

20.
A kind of H non‐fragile synchronization guaranteed control method is put forward for a class of uncertain time‐varying delay complex network systems with disturbance input. The network under consideration includes unknown but bounded nonlinear coupling functions f(x) and the coupling term and node system with time‐varying delays. The nonlinear vector function f(x) need not be differentiable but should satisfy the norm bound. A non‐fragile state feedback controller of the gain with sufficiently large regulation margin is designed. It is ensured that the parameters of the controller could still be effective under small perturbation. The sufficient conditions for the existence of H synchronous non‐fragile guaranteed control of this system have been obtained by constructing a suitable Lyapunov‐Krasovskii functional, adopting matrix analysis, using the theorem of Schur complement and linear matrix inequalities (LMI). These conditions can guarantee robust asymptotic stability for each node of network with disturbance as well as achieve a prescribed robust H performance level. Finally, the feasibility of the designed method is verified by a numerical example.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号