首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper considers the problem of stabilizing a single‐input single‐output linear time varying system using a low order controller and a reference model. The closed loop is a linear singularly perturbed system with uniform asymptotic stability behavior. We calculate bounds ? ∈ (0,? * ) as in Kokotovi?'s book, such that the uniform asymptotic stability of the singularly perturbed system is guaranteed. We show how to design a control law such that the system dynamics is assigned by a Hurwitz polynomial with constant coefficients. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
3.
A robust adaptive tracking control scheme is presented for a class of multiple‐input and multiple‐output mechanical systems with unknown disturbances under actuator saturation. The unknown disturbances are expressed as the outputs of a linear exogenous system with unknown coefficient matrices. An adaptive disturbance observer is constructed for the online disturbance estimation. An actuator saturation compensator is introduced to attenuate the adverse effects of actuator saturation. The adaptive backstepping method is then applied to design the robust adaptive tracking control law. It is proved that the designed control law makes the system outputs track the desired trajectories and guarantees the global uniform ultimate stability of the closed‐loop control system. Simulations on a two‐link robotic manipulator verify the effectiveness of the proposed control scheme.  相似文献   

4.
We address the sliding mode control design problem for output reference trajectory tracking problems in the special class of MIMO flat systems known as static feedback linearizable systems. We assume unavailable system state components but rely on available inputs and measurable flat outputs. Each controller will largely ignore state and control input couplings by adopting a standard sliding mode controller scheme derived from the SISO case and used this as decoupled input‐to‐flat‐output model. The standard controller arises from a vastly simplified pure integration, additively perturbed, system. The simplified pure integration system controlled trajectories are shown to be time‐scale homotopically equivalent to those of the nonlinear flat system. The basic sliding surface coordinate function design is approached from the perspective of structural integral reconstructors requiring only the inputs and the flat outputs of the system. Integral structural reconstructors were introduced by Fliess et al for the control of linear SISO and MIMO systems, giving rise to the generalized proportional integral control method. Simulations are presented for SISO and MIMO systems and experimental results are reported for a two‐degree‐of‐freedom fully actuated robotic manipulator.  相似文献   

5.
This paper proposes an adaptive algorithm for the online control of discrete‐time large‐scale nonlinear systems, which reduces the noise effects acting on the system output (regulation problem) and allows the system output to keep track of a time‐varying trajectory (tracking problem). We consider a large‐scale nonlinear system that can be decomposed into single‐input single‐output (SISO) interconnected nonlinear subsystems with known structure variables (orders, delays) and unknown time‐varying parameters. Each interconnected subsystem is described by block‐oriented models, specifically a discrete‐time Hammerstein model. Parameter adaptation is performed using a recursive parametric estimation algorithm based on the adjustable model method and the least squares techniques. Simulation results of an interconnected petroleum process are provided to demonstrate the effectiveness of the developed control scheme.  相似文献   

6.
This paper is an extended study of an existing block backstepping control scheme designed for a class of perturbed multi‐input systems with multiple time‐varying delays to solve regulation problems, where the time‐varying delays must be linear with state variables. A new control scheme is proposed in this research where all the unknown multiple time‐varying delay terms in the dynamic equations can be nonlinear state functions in non‐strict feedback form, and the upper bounds of the time‐delays as well as their derivatives need not to be known in advance. Another improvement is to further alleviate the problem of “explosion of complexity,” i.e., to reduce the number of time derivatives of virtual inputs that the designers have to compute in the design of controllers. This is done by utilizing an existent derivative estimation algorithm to estimate the perturbations in the designing of proposed controllers. Adaptive mechanisms are also embedded in the controllers so that the upper bounds of perturbations and perturbation estimation errors are not required to be known beforehand. The resultant controlled systems guarantee asymptotic stability in accordance with the Lyapunov stability theorem. Finally, a numerical example and a practical application are demonstrated to verify the merits and feasibility of the proposed control scheme.  相似文献   

7.
In this paper, we explore how to get the information of input‐output coupling parameters (IOCPs) for a class of uncertain discrete‐time systems by using iterative learning technique. Firstly, by taking advantage of repetitiveness of control system and informative input and output data, we design an iterative learning scheme for unknown IOCPs. It is shown that we can get the exact values of IOCPs one by one through running the repetitive system T+1 times if the control system is with identical initial state and noise free. Secondly, we give the iterative learning scheme for unknown IOCPs in the presence of measurement noise, system noise, or initial state drift and analyze the influence factors on the performance of developed iterative learning scheme. Meanwhile, we introduce the maximum allowable control deviation into the iterative learning mechanism to minimize the negative impact of noise on the performance of learning scheme and to enhance the robust of iterative learning scheme. Thirdly, for a class of multiple‐input–multiple‐output systems, we also develop iterative learning mechanism for unknown input‐output coupling matrices. Finally, an illustrative example is given to demonstrate the effectiveness of proposed iterative learning scheme.  相似文献   

8.
9.
A piecewise linear system consists of a set of linear time‐invariant (LTI) subsystems, with a switching sequence specifying an active subsystem at each time instant. This paper studies the adaptive control problem of single‐input, single‐output (SISO) piecewise linear systems. By employing the knowledge of the time instant indicator functions of system parameter switches, a new controller structure parametrization is proposed for the development of a stable adaptive control scheme with reduced modeling error in the estimation error signal used for parameter adaptive laws. This key feature is achieved by the new control scheme's ability to avoid a major parameter swapping term in the error model, with the help of indicator functions whose knowledge is available in many applications. A direct state feedback model reference adaptive control (MRAC) scheme is presented for such systems to achieve closed‐loop signal boundedness and small output tracking error in the mean square sense, under the usual slow system parameter switching condition. Simulation results on linearized NASA GTM models are presented to demonstrate the effectiveness of the proposed scheme.  相似文献   

10.
The stability of a class of single-input, single-output singularly perturbed systems formed by a linear time-invariant feedforward block with a sector bounded time varying feedback is considered. It is shown that if the reduced order ‘ slow ’ subsystem is absolutely stable and the parasitics are asymptotically stable and sufficiently fast then the full system is absolutely stable. Bounds on the singular perturbation parameter for uniform asymptotic stability and absolute stability are obtained.  相似文献   

11.
A class of nonlinear memoryless controllers is synthesized to guarantee global uniform ultimate boundedness, with respect to some known set, for a class of imperfectly known singularly perturbed nonlinear systems, with discrete and distributed delays, provided that the singular perturbation parameter is small enough. Each feedback controller is designed using information based mainly on a nonlinear, affine in the control, ‘reduced-order’ system. The uncertainty, which may be time, state, delayed state and/or input dependent, is modelled by additive nonlinear perturbations influencing a known nominal, singularly perturbed time-delay system of the retarded type. A ‘matched’ uncertainty structural condition for the reduced-order system is not presumed in this paper.  相似文献   

12.
We define model recovery anti-windup for SISO linear control systems with output saturation. We address the problem by relying on a hybrid modification of the linear closed loop which employs a suitable logic variable to activate/deactivate various components of a control scheme. The scheme relies on a finite-time observation law, an open-loop observer and an open-loop input generator which is capable of driving the plant output within the saturation limits. Then the control scheme is based on suitable (hybrid) resetting laws allowing the controller to operate on the artificial output signal generated by the open-loop observer when the actual plant output is outside the saturation limits. Unlike existing results, not only we prove uniform global asymptotic stability of the closed loop, but we also prove the local preservation and global recovery properties, typical of model recovery anti-windup paradigms. We also illustrate the proposed technique on an example study.  相似文献   

13.
A novel output‐feedback sliding mode control strategy is proposed for a class of single‐input single‐output (SISO) uncertain time‐varying nonlinear systems for which a norm state estimator can be implemented. Such a class encompasses minimum‐phase systems with nonlinearities affinely norm bounded by unmeasured states with growth rate depending nonlinearly on the measured system output and on the internal states related with the zero‐dynamics. The sliding surface is generated by using the state of a high gain observer (HGO) whereas a peaking free control amplitude is obtained via a norm observer. In contrast to the existing semi‐global sliding mode control solutions available in the literature for the class of plants considered here, the proposed scheme is free of peaking and achieves global tracking with respect to a small residual set. The key idea is to design a time‐varying HGO gain implementable from measurable signals. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
This paper investigates the quantized feedback control for nonlinear feedforward systems with unknown output functions and unknown control coefficients. The unknown output function is Lipschitz continuous but may not be derivable, and the unknown control coefficients are assumed to be bounded. To deal with this challenging quantized control problem, a time‐varying low‐gain observer is designed and a delicate time‐varying scaling transformation is introduced, which can avoid using the derivative information of the output function. Then, based on the well‐known backstepping method and the sector bound approach, a time‐varying quantized feedback controller is designed using the quantized output, which can achieve the boundedness of the closed‐loop system states and the convergence of the original system states. Moreover, a guideline is provided for choosing the parameters of the input and output quantizers such that the closed‐loop system is stable. Finally, two simulation examples are given to show the effectiveness of the control scheme.  相似文献   

15.
In this paper we carry out a detailed analysis of the multiple time scale behavior of singularly perturbed linear systems of the formdot{x}^{epsilon}(t) = A(epsilon)x^{epsilon}(t)whereA(epsilon)is analytic in the small parameter ε. Our basic result is a uniform asymptotic approximation toexp A(epsilon)tthat we obtain under a certain multiple semistability condition. This asymptotic approximation gives a complete multiple time scale decomposition of the above system and specifies a set of reduced order models valid at each time scale. Our contribution is threefold. 1) We do not require that the state variables be chosen so as to display the time scale structure of the system. 2) Our formulation can handle systems with multiple ( > 2) time scales and we obtain uniform asymptotic expansions for their behavior on [0, infty]. 3) We give an aggregation method to produce increasingly simplified models valid at progressively slower time scales.  相似文献   

16.
This paper presents a transient trajectory shaping (TTS) control method for the SISO strict feedback nonlinear systems. The TTS control refers to explicitly constraining the system output tracking error transient trajectories within predesigned time‐varying boundaries while they are converging to equilibrium. By this method, the boundaries of system output transient trajectories can be designed a priori according to the system transient control performance requirements in both symmetric and asymmetric ways. With a class of time‐varying boundary functions, control laws can be devised by utilizing the enhanced differential unbounded function techniques. Such control laws can ascertain that the system output tracking errors travel within their respectively predesigned time‐varying boundaries while converging to origin. To handle the control input exaggeration issue in TTS, input constraint control techniques are proposed to effectively reduce the required control input magnitude for second‐order systems. A numerical example is utilized to show the effectiveness of the proposed TTS control methods. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
This paper is devoted to the global stabilization via output feedback for a class of nonlinear systems with unknown relative degree, dynamics uncertainties, unknown control direction, and nonparametric uncertain nonlinearities. In particular, the unknown relative degree is without known upper bound, which renders us to research for a filter with varying dimension rather than the ones with over dimensions in the existing literature. In comparison with more popular but a bit stronger input‐to‐state stable or input‐to‐state practically stable requirement, only bounded‐input bounded‐state stable requirement is imposed on the dynamics uncertainties, which affect the systems in a persistent intensity rather than in a decaying one. In this paper, to compensate multiple serious system uncertainties and realize global output‐feedback stabilization, a design scheme via switching logic together with varying dimensional filter is developed. In this scheme, 2 switching sequences, which separately generate the gains of the controller and act as the varying dimensions of the filter, are designed to overcome unknown control direction, dynamics uncertainties and nonparametric uncertain nonlinearities, and unknown relative degree, respectively. A 2‐mass lumped‐parameter structure is provided to show the effectiveness of the proposed method in this paper.  相似文献   

18.
In this paper, performance oriented control laws are synthesized for a class of single‐input‐single‐output (SISO) n‐th order nonlinear systems in a normal form by integrating the neural networks (NNs) techniques and the adaptive robust control (ARC) design philosophy. All unknown but repeat‐able nonlinear functions in the system are approximated by the outputs of NNs to achieve a better model compensation for an improved performance. While all NN weights are tuned on‐line, discontinuous projections with fictitious bounds are used in the tuning law to achieve a controlled learning. Robust control terms are then constructed to attenuate model uncertainties for a guaranteed output tracking transient performance and a guaranteed final tracking accuracy. Furthermore, if the unknown nonlinear functions are in the functional ranges of the NNs and the ideal NN weights fall within the fictitious bounds, asymptotic output tracking is achieved to retain the perfect learning capability of NNs. The precision motion control of a linear motor drive system is used as a case study to illustrate the proposed NNARC strategy.  相似文献   

19.
We investigate the asymptotic properties of singularly perturbed control systems with three time scales. We apply the averaging method to construct a limiting system for the slowest motion in the form of a differential inclusion. Sufficient conditions for the uniform convergence of the slowest trajectories are given.  相似文献   

20.
This paper studies the problem of adaptive fuzzy asymptotic tracking control for multiple input multiple output nonlinear systems in nonstrict‐feedback form. Full state constraints, input quantization, and unknown control direction are simultaneously considered in the systems. By using the fuzzy logic systems, the unknown nonlinear functions are identified. A modified partition of variables is introduced to handle the difficulty caused by nonstrict‐feedback structure. In each step of the backstepping design, the symmetric barrier Lyapunov functions are designed to avoid the breach of the state constraints, and the issues of overparametrization and unknown control direction are settled via introducing two compensation functions and the property of Nussbaum function, respectively. Furthermore, an adaptive fuzzy asymptotic tracking control strategy is raised. Based on Lyapunov stability analysis, the developed control strategy can effectually ensure that all the system variables are bounded, and the tracking errors asymptotically converge to zero. Eventually, simulation results are supplied to verify the feasibility of the proposed scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号