首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, the wear performance of the aged AlMgSi1 alloy was investigated. Great improvements in mechanical properties of Al alloys can be achieved by suitable solution treatment and aging operations. A pin-on-disk wear machine was designed and developed for abrasive wear tests. The wear resistance was evaluated using a pin-on-disk wear testing method with a SiC abrasive paper counterface. The variation of wear volume is presented as a function of applied normal load, abrasive grit size and sliding distance for running speed. Mass losses were measured within a load range of 6.45–11 N, a sliding velocity range of 0.078–0.338 m/s and abrasive grit size of 5–30 μm. The effects of different sliding speeds and loads on wear resistance and surface roughness were also examined. It was measured amounts of mass loss and examined worn surfaces. Metal microscope was used to study the microstructures of the wear scars. Natural aged specimen observed maximum wear resistance.  相似文献   

2.
Three groups of hypereutectic cast irons alloyed with Cu, Ni and microalloying additive like Ti and Nb were examined for its hardness and wear resistance in the austempered (360 °C/3 h) and quenched and tempered conditions at varying tempering temperatures. It is observed that the cast irons in the quenched and tempered condition showed good wear resistance and moderate hardness at 400 °C. This was comparable with the wear resistance in austempered condition. The study also showed that in quenched and tempered condition, increasing Cu content in cast irons improved its wear resistance moderately while increasing Ni content has decreased its wear resistance. The presence of strong carbide formers (Nb, Ti) did not give significant improvement in wear resistance in quenched and tempered condition. Even in austempered alloys, higher Cu content increases its wear resistance and higher Ni content decreases their wear resistance. The austempered alloys showed ausferritic microstructure with 20% austenite phase which enhances wear resistance through transformation induced plasticity effect. On the other hand, the quenched and tempered alloys showed good wear resistance at 400 °C due to fine tempered carbides in the matrix.  相似文献   

3.
D. Das  K.K. Ray 《低温学》2009,49(5):176-1250
The wear properties, hardness values and the microstructural characteristics of AISI D2 steel cryotreated at 77 K for different soaking durations (0-132 h) have been examined to find out the optimized soaking time in cryogenic processing for maximization of its wear resistance. Examination of the structure-property relations of differently treated specimens indicates that the best wear resistance is obtained for specimens cryogenically processed for 36 h. This result has been substantiated using the nature of the associated variations of different microstructural features, hardness values, topography of worn surfaces and characteristics of wear debris.  相似文献   

4.
Li-Yu Lin 《Thin solid films》2009,517(5):1690-1266
The tribological behavior of zinc oxide (ZnO) films grown on glass and silicon (100) substrates by sol-gel method was investigated. Particularly, the as-coated films were post-annealed at different temperatures in air to investigate the effect of annealing temperature. Crystal structural and surface morphology of the films were measured by X-ray diffraction (XRD) and Atomic Force Microscopy (AFM). XRD patterns and AFM images indicated that the crystallinity and grain size of the films were enhanced and increased, respectively, with temperature. The tribological behavior of films was evaluated by sliding the ZnO films against a Si3N4 ball under 0.5 gf normal load using a reciprocating pin-on-plate tribo-tester. The wear tracks of the films were measured by AFM to quantify the wear resistance of the films. The results showed that the wear resistance of the films could be improved by the annealing process. The wear resistance of the films generally increased with annealing temperature. Specifically, the wear resistance of the films was significantly improved when the annealing temperature was higher than 550° C. The increase in the wear resistance is attributed to the increase in hardness and modulus of the film with annealing temperature.  相似文献   

5.
We study the influence of rare-earth metals on physicomechanical properties and wear resistance of cast tool steel and establish the optimal content of carbon (0.55–0.65%) which guarantees sufficiently high abrasive wear resistance of steel. Alloying with titanium, niobium, and rare-earth metals improves wear resistance of steels, especially with elevated contents of carbon.Karpenko Physicomechanical Institute, Ukrainian Academy of Sciences. L'viv. Translated from Fiziko-Khimicheskaya Mekhanika Materialov, Vol. 31, No. 3, pp. 103–106, May–June, 1995.  相似文献   

6.
This article presents an effect of matrix alloy and influence of SiC particle on the sliding wear characteristics of high strength aluminium alloys AA7010, AA7009 and AA2024, composites was examined under varying applied pressure and a fixed sliding speed of 3.35 m/s. The results revealed that the wear resistance of the composite was noted to be significantly higher than that of the alloy and is suppressed further due to addition of SiC particles. The overall observation among the matrix alloys, AA7010 alloy shows maximum wear resistance than that of the other, and can withstand the seizure pressure up to 2.6 MPa. The wear mechanism was studied through worn surfaces and microscopic examination of the developed wear tracks. The wear mechanism strongly dictated by the formation and stability of oxide layer, mechanically mixed layer (MML) and subsurface deformation and cracking. The overall results indicate that the high strength aluminium alloys and composite could be considered as an excellent material where high strength and wear resistance components are prime importance especially designing for structural applications in aerospace and general engineering sectors.  相似文献   

7.
In this study, the effect of composition segregation on the wear resistance of high aluminum zinc-based alloy is investigated. The test results show that the improving wear resistance is due to a combined action of α and η phase. The rich solid solution of α−Al has higher strength and load bearing capability than of η phase. Under the action of the sliding friction, the hard α phase was protruded from matrix and acted as a loading phase. The η phase helped to act as a type of natural lubricant in sliding wear situations. Meanwhile, the iron transferred from the steel ring to block and forced to the recess continuously, which forms a thin protective film at the contact surface, then the load bearing capability of the test alloy would be improved.  相似文献   

8.
The aerospace alloy, Ti–6Al–4V is a difficult material to machine, and, in general, shows poor wear resistance due to the soft, ductile properties of the alloy. In this study, the Ti–6Al–4V alloy has been heat treated to a temperature above and below the β-transus temperature and then quenched using a medium of oil, water or liquid nitrogen to change the surface wear behaviour of the alloy. The results showed that no significant change in microstructure and surface properties was achieved when the alloy was heated to 750 °C and then quenched in liquid nitrogen. However, when the alloy was heated to 1,000 °C (above the β-transus), the hardness of the titanium alloy significantly increased from 400 VHN to about 800 VHN, but the wear resistance of the alloy did not improve. In fact, the wear resistance of the alloy decreased as the surface hardness increased, and this change in wear behaviour was attributed to a change in the mechanism of wear from plastic deformation to brittle-fracture of the surface.  相似文献   

9.
Sliding wear tests were carried out in order to investigate wear resistance and resultant microstructure of Ni/Cu multilayers. The Ni/Cu multilayers having the component layer thickness h ranging from 5 to 100 nm were fabricated on copper substrates using the elecrodeposition technique. It was found that the wear depths in the multilayers were less than one-fifth of that of a conventional nickel coating at a high load condition. The wear resistance of the multilayer was almost independent of the component layer thickness, except the multilayer of h = 100 nm whose resistance was lower than those of the others. The observation of cross section revealed that the grains were generated locally near the worn surface in the Ni/Cu multilayers. Surface cracks were grown in such grained areas. The multilayer having a large grained area showed relatively low wear resistance. From the TEM observation, there were many equiaxed grains without the laminated structure. It is conceivable that the equiaxed grains without the laminated structure were formed due to dynamic recrystallization occurring after the laminated structure was annihilated by severe deformation. Assuming that the annihilation period is required for the wear of the Ni/Cu multilayer, the high wear resistance can be obtained regardless of the strengths of the multilayers.  相似文献   

10.
The rapid technical development enhances the demands on constructional materials in terms of their resistance to frictional wear, resistance to corrosion and erosion, high hardness, high tensile and fatigue strength. These demands can be satisfied by e.g. applying various surface engineering techniques that permit to modify the microstructure, phase and chemical composition of the surface layers of the treated parts. A prospective line of the development of surface engineering is the production of composite layers by combining various surface engineering methods. The paper presents the results of examinations of the phase composition and frictional wear resistance of the layers produced by hybrid processes, i.e. such that combined glow discharge assisted nitriding performed at 450 °C and 550 °C with a pulsed laser deposition of boron nitride coatings (PLD method). It has been shown that the boron nitride coatings formed on nitrided AISI 316L steel increase its frictional wear resistance.  相似文献   

11.
We investigate the wear resistance of VT14 titanium alloy after oxynitriding realized by modifying nonstoichiometric titanium nitride by oxygen. It is shown that the oxide component in an oxynitride coating improves the wear resistance of the alloy in a friction pair with BrAZh9-4l brass. It is established that the wear rate of a “VT14 titanium alloy with oxynitride coating–U8 steel” tribopair is an order smaller than that of a “VT14 titanium alloy with oxynitride coating–BrAZh9-4l brass” tribopair. It is also established that the tribologic behavior of the former tribopair improves after replacing AMH-10 lubricant by I-40A lubricant.  相似文献   

12.
Powder metallurgy (PM) technique offers progress of new material processing for applications requiring various combinations of properties. Demanding for applying ceramic materials in tribological concept is increasingly growing over last two decades. Unique characteristic of ceramic materials such as low density, high hardness, low thermal expansion, high corrosion and tribological resistance is the rudimentary reason. In this study, different weight percentage of alumina nanoparticles was added to low alloy powder steel (Astaloy 85Mo) as reinforcement agent. Microstructure and tribological behavior of the metal matrix composite has investigated at dry condition and room temperature for different loads by reciprocating tribometer. Sintered specimens possess homogenous microstructure with bainitic and partial ferrite feature in retained austenite matrix. Outcomes show improvement in wear resistance by increasing of alumina nanoparticles containing 3 wt.%, porosity level of 15.38% and micro hardness of 105.4 HV which demonstrates the best wear resistance properties. Tribological behavior of PM steel parts is so complex due to existing pores. Not only do surface pores deteriorate the wear resistant as inherent characteristic but also the properties could enhance at optimum porosity level. An important role of surface porosities which have crucial influence on decreasing wear rate is trapping wear debris causes severe wear. Mixed mode of abrasive, adhesive and oxidation mechanisms were distinguishing according to electron image analysis.  相似文献   

13.
This experimental study investigated the effect of cryogenic treatments on the wear behavior of 80CrMo12 5 tool steel. For this purpose, two different cryogenic temperatures were used: −80 °C as the shallow cryogenic temperature and −196 °C as the deep cryogenic temperature. The results showed that the cryogenic treatments decrease retained austenite, which is more effective in the case of the deep cryogenic treatment (DCT). As a result, a remarkable improvement in the wear resistance of the cryogenically treated specimens was observed. In addition, DCT increases the percentage of carbides and their homogeneity in distribution. An optimum holding time was found in the deep cryogenic temperature, in which the hardness and wear resistance show maximum values. Moreover, the wear debris and worn surfaces showed that the dominant mechanism in the wear test is adhesive.  相似文献   

14.
The mechanical and wear behavior of a series of as-cast gray iron alloys were compared with properties obtained after austempering at 360 °C. The austempered alloys showed equivalent or moderately enhanced mechanical strength than the as-cast pearlitic gray irons. The specific wear rates of all the austempered alloys decreased significantly by 7–15 times and friction coefficient reduced by 30–50% compared to pearlitic alloyed gray irons. The dry sliding wear studies of as-cast alloys against high carbon 1%Cr through-thickness hardened steel shows that the specific wear rate ranged from 5.6 to 19.1 (×10−7) g/Nm with friction coefficient from 0.55 to 0.7. While, the austempered alloys showed wear rates from 0.5 to 2.6 (×10−7) g/Nm with friction coefficient ranging from 0.23 to 0.4. The improved wear resistance was attributed to the layer wise surface phase transformation associated with strain induced martensite formation of the stabilized austenite in the austempered matrix, lubrication of the interface by the flake graphite and better heat conduction from the rubbing interface by higher volume fraction of the graphite. Cast iron alloyed with Ni shows enhanced mechanical properties and wear resistance. The tensile strength shows decreasing trend with increase in carbon equivalent and graphite volume. The specific wear rate and friction coefficient shows decreasing trend with increase in hardness and graphite flake volume.  相似文献   

15.
In this paper, the influence of the addition of Al2O3 particles on the microstructure and wear properties of Fe-based amorphous coatings prepared by high velocity oxygen fuel (HVOF) has been studied. The wear behaviors of the composite coatings were evaluated against Si3N4 in a pin-on-disk mode in air and in 3.5 wt.% NaCl solution. It was found that the Al2O3 particles were homogenously distributed in the amorphous matrix and the composite coatings exhibited improved wear resistance and reduced coefficient of friction (COF) in both air and wet conditions as compared to the monolithic amorphous coating. The composite coating reinforced with 20 wt.% Al2O3 particles exhibit the best wear performance, which, for example, has extremely low COF (< 0.2) and high wear resistance (2–3 times higher than monolithic amorphous coating). Detailed analysis on the worn surface indicated that the wear mechanism for the amorphous and composite coatings is similar and is dominated by oxidative delamination in air and by corrosion wear in 3.5% NaCl solution. The enhanced wear resistance is mainly attributed to the addition of Al2O3 particles which exhibit high hardness, good corrosion resistance and excellent chemical and thermal stability.  相似文献   

16.
We have studied the effect of alloying of aluminum with copper (2–4%), silicon (2–4.5%), tin (10–15%), and lead (10–15%) on its wear resistance under conditions of friction in a couple with a copper contact wire. We have established that alloying enhances the wear resistance of metals and decreases the wear of contact wires. The use of an electrographitic bush decreases the wear of a metal insert. Field investigations of metal trolleybus current-collecting inserts with electrographitic bushes show that their durability is 5–8 times greater in dry weather and 2–3 times greater in rainy weather than that of conventional articles. In addition, the wear of the contact wire is minimally admissible. __________ Translated from Fizyko-Khimichna Mekhanika Materialiv, Vol. 42, No. 6, pp. 111–115, November–December, 2006.  相似文献   

17.
TiAlN films were deposited on tool materials through an r.f. bias reactive sputtering process. The effects of the aluminium composition in the films on the hardness, oxidation resistance and wear properties were studied. The results indicated that both the aluminium composition and cutting speed had substantial effects on wear resistance. The oxide phases formed at elevated cutting temperatures, especially alumina, had important effects on the cutting performance. An optimum improvement of nine times in wear resistance compared to uncoated tools, was observed. © 1998 Chapman & Hall  相似文献   

18.
Effect of T6 heat treatment on microstructure and wear behavior of hypoeutectic Al–Si alloys with iron contents of 0.15, 0.7 and 1.2 wt% was studied. Dry sliding wear tests were performed on a pin-on-disk tribometer under normal loads of 20, 30 and 40 N. The alloy with 0.7 wt% iron showed the highest wear resistance before the heat treatment under the loads tested. T6 heat treatment improved the wear resistance of the alloys with different iron contents compared to the non-heat treated 0.7 wt% iron alloy under all applied loads. The improvements in the wear can be attributed to the decrease of length and volume fraction of hard and brittle β-Al5FeSi iron-rich intermetallics and spherodization of the coarse eutectic silicon particles by diffusion of iron and silicon into the matrix upon solution heat treatment. The change in the morphology of the phase particles reduced the probability of nucleation and propagation of subsurface cracks and increased the wear resistance in the samples.  相似文献   

19.
To perform a long lasting, crack-free repair welding on ultrahigh strength steels, the filler metal must be chosen and applied properly. Avoiding several short-term repairs or replacements, the repaired weldment should reveal comparative characteristics such as wear resistance, toughness and hardness to base metal. In the present study, a novel functionally graded material have been introduced to obtain enhanced wear resistance and hardness at surface as well as improved fracture toughness at fusion line of repaired weldments. A comparative study of wear resistance of repaired weld metals has been carried out by pin-on-disk apparatus at 5 N normal load and 0.14 ms−1 sliding speed. Fracture toughness of weld metal was also evaluated by charpy absorbed fracture energy tests and scanning electron microscopy fractograghs. The results show that by employing functionally graded layers, toughness was enhanced significantly while retaining the surface wear resistance.  相似文献   

20.
The purpose of this work is to understand the effect of cerium addition on wear resistance behaviour of as-cast alloys. Al–12Si–4 Mg alloys with 1–5 wt% cerium addition were prepared using the casting technique. A sliding wear test was carried out under applied loads of 10 N, 30 N and 50 N at a fixed sliding speed of 1 m/s using a pin-on-disc configuration. The wear test was conducted in dry conditions at room temperature of 25 °C. Detailed analysis of the microstructure, worn surface, collected debris and microhardness was undertaken in order to investigate the differences between the as-cast alloys with different levels of cerium addition. The addition of 1–5 wt% cerium was found to lead to the precipitation of intermetallic phases (Al–Ce), resulting a needle-like structures. Increasing cerium content up to 2 wt% improved both wear resistance and microhardness of as-cast alloys. Addition of more than 2 wt% cerium, however, led to a decrease in microhardness, resulting in lower wear resistance of the alloys. Moderate wear was observed at all loads, with specific wear rates (K′) ranging from 6.82 × 10−5 with 2 wt% Ce at applied load of 50 N to 21.48 × 10−5 mm3/N m without added Ce at an applied load of 10 N. Based on K′ ranges, the as-cast alloys exhibited moderate wear regimes, and the mechanism of wear is a combination of abrasion and adhesion. Alloy containing 2 wt% Ce, with the highest hardness and lowest K′ value, showed the greatest wear resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号