首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
H-NS is a major Escherichia coli nucleoid-associated protein involved in bacterial DNA condensation and global modulation of gene expression. This protein exists in cells as at least two different isoforms separable by isoelectric focusing. Among other phenotypes, mutations in hns result in constitutive expression of the proU and fimB genes, increased fimA promoter inversion rates, and repression of the flhCD master operon required for flagellum biosynthesis. To understand the relationship between H-NS structure and function, we transformed a cloned hns gene into a mutator strain and collected a series of mutant alleles that failed to repress proU expression. Each of these isolated hns mutant alleles also failed to repress fimB expression, suggesting that H-NS-specific repression of proU and fimB occurs by similar mechanisms. Conversely, alleles encoding single amino acid substitutions in the C-terminal DNA-binding domain of H-NS resulted in significantly reduced affinity for DNA yet conferred a wild-type fimA promoter inversion frequency, indicating that the mechanism of H-NS activity in modulating promoter inversion is independent of DNA binding. Furthermore, two specific H-NS amino acid substitutions resulted in hypermotile bacteria, while C-terminal H-NS truncations exhibited reduced motility. We also analyzed H-NS isoform composition expressed by various hns mutations and found that the N-terminal 67 amino acids were sufficient to support posttranslational modification and that substitutions at positions 18 and 26 resulted in the expression of a single H-NS isoform. These results are discussed in terms of H-NS domain organization and implications for biological activity.  相似文献   

2.
3.
Osmotic regulation of proU expression in the enterobacteria is achieved, at least in part, by a repression mechanism involving the histone-like nucleoid protein H-NS. By the creation of binding sites for the TyrR regulator protein in the vicinity of the sigma70-controlled promoter of proU in Escherichia coli, we were able to demonstrate a superposed TyrR-mediated activation by L-phenylalanine (Phe), as well as repression by L-tyrosine, of proU expression in vivo. Based on the facts that pronounced activation in the presence of Phe was observed even at a low osmolarity and that the affinity of binding of TyrR to its cognate sites on DNA is not affected by Phe, we argue that H-NS-mediated repression of proU at a low osmolarity may not involve a classical silencing mechanism. Our data also suggest the involvement of recruited RNA polymerase in the mechanism of antirepression in E. coli.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
p53 transactivates the expression of a variety of genes by binding to specific DNA sequences within the promoter. We have investigated the ability of wild-type p53 and a non-DNA binding p53 mutant to activate the hepatocyte growth factor/scatter factor (HGF/SF) promoter using chloramphenicol acetyltransferase reporter constructs. We also used deletion sequences of the HGF/SF promoter to identify which regions, if any, were responsible for p53 binding. Our results show that wild-type but not mutant p53 activates the HGF/SF promoter when using -3000 and -755 bp upstream of the HGF/SF gene. This activation is lost when promoter sequences covering -365 and -239 bp are used. Analysis of the DNA sequence between -365 and -755 bp shows one putative p53 half-site with 80% homology to the consensus sequence and another half-site 3 bases downstream of this with 100% homology to the consensus sequence. In contrast to previously identified p53 binding DNA sequences, the downstream half-site is inverted. We propose that the HGF/SF promoter can be activated by wild-type p53 in vivo and that this could be as a result of a novel form of sequence-specific DNA binding.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号