首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
2.
The number and size distribution of axons and neurons were examined in the L7 spinal roots and ganglia of kittens 14 to 220 days after early postnatal sciatic nerve crush. The results show that motoraxons in the ventral root as well as axons and perikarya of sensory neurons in the dorsal root remained growth-retarded throughout the examined period. This was most evident in the dorsal root. Both ventral and dorsal roots showed some loss of myelinated axons, but this was only half that previously observed after sciatic nerve resection. Whereas in the dorsal roots and dorsal root ganglia the loss seemed to be nonselective with respect to size, axons in the gamma range were primarily affected in the ventral roots. In the dorsal roots the proportion of unmyelinated axons was comparable with controls but in the ventral roots it was somewhat elevated. In most cases the loss of dorsal root ganglion neurons was relatively greater than the decrease of dorsal root axons.  相似文献   

3.
OBJECTIVES: To identify risk factors in 60 cases of mediastinitis amongst 2512 patients (2.3%) subjected to isolated coronary bypass surgery from March 1988 through December 1995, treated by a closed irrigation/drainage system. PATIENTS AND METHODS: The mean age of the 60 patients was 56.9 +/- 6.8 years (45-81 years) and 55 (91.6%) were male. Early mediastinal reexploration was performed in all cases immediately after the diagnosis of mediastinitis, with debridement of necrosed tissues, followed by implantation of a closed-circuit irrigation system of the mediastinum constituted by irrigation catheter and drain, closure of the sternum and skin, and specific systemic antibiotic therapy. The mean interval between the original surgery and reexploration was 9.4 days (range 6-14 days). No patient required more extensive procedures, namely omental or muscular flaps. Twenty potential risk factors in patients with mediastinitis, including diabetes mellitus, obesity, coexistence of peripheral vascular disease, decreased LV function, use of inotropes, mediastinal blood drainage and utilization of double IMA, were compared with the group without mediastinitis. RESULTS: Mean cardiopulmonary bypass time was 74.1 +/- 8.1 min, anesthetic time 3.5 +/- 0.8 h and postoperative mechanical ventilation 18 +/- 3 h. A total of 23 patients (38.3%) received one IMA and 35 (58.3%) two IMAs. In the postoperative period, 7 of the 60 patients (11.6%) had required inotropes because of low output. Mediastinal blood loss was 1112cc +/- 452cc and 9 patients (15%) were transfused. Cultures were positive in 40 cases (66.6%) and the most frequent infecting agent was the Staph. epidermidis in 25 cases (62.5%), followed by Candida albicans and Enterobacter and Serratia species (7.5% each); 1 patient (1.7%) died and 9 (15%) had renal failure. The irrigation/drainage was maintained for a mean of 9.1 days (5-83 days). Patients with mediastinitis had a significantly higher prevalence of diabetes (41.6% vs. 18.8%; P < 0.01), obesity (48.3% vs. 15.2%; P < 0.001), peripheral vascular disease (11.6% vs. 4.0%; P < 0.05), but a lower incidence of poor LV function (18.3% vs. 32.7%; P < 0.05). A double IMA was used more frequently in patients who had mediastinitis (58.3% vs. 23.5%; P < 0.001) CONCLUSIONS: Diabetes mellitus, obesity, co-existence of peripheral vascular disease and use of double IMA are risk factors for mediastinitis after coronary artery surgery. The efficacy of the closed method of treatment with a mediastinal irrigation/drainage system was increased with early diagnosis and reintervention.  相似文献   

4.
Dorsal root afferent depolarization and antidromic firing were studied in isolated spinal cords of neonatal rats. Spontaneous firing accompanied by occasional bursts could be recorded from most dorsal roots in the majority of the cords. The afferent bursts were enhanced after elevation of the extracellular potassium concentration ([K+]e) by 1-2 mM. More substantial afferent bursts were produced when the cords were isolated with intact brain stems. Rhythmic afferent bursts could be recorded from dorsal roots in some of the cords during motor rhythm induced by bath-applied serotonin and N-methyl--aspartate (NMDA). Bilaterally synchronous afferent bursts were produced in pairs of dorsal roots after replacing the NaCl in the perfusate with sodium-2-hydroxyethansulfonate or after application of the gamma-aminobutyric acid-A (GABAA) receptor antagonist bicuculline with or without serotonin (5-HT) and NMDA. Antidromic afferent bursts also could be elicited under these conditions by stimulation of adjacent dorsal roots, ventrolateral funiculus axons, or ventral white commissural (VWC) fibers. The antidromic bursts were superimposed on prolonged dorsal root potentials (DRPs) and accompanied by a prolonged increase in intraspinal afferent excitability. Surgical manipulations of the cord revealed that afferent firing in the presence of bicuculline persisted in the hemicords after hemisection and still was observed after removal of their ventral horns. Cutting the VWC throughout its length did not perturb the bilateral synchronicity of the discharge. These findings suggest that the activity of dorsal horn neurons is sufficient to produce the discharge and that the bilateral synchronicity can be maintained by cross connectivity that is relayed from side to side dorsal to the VWC. Antagonists of GABAB, 5-HT2/5-HT1C, or glutamate metabotropic group II and III receptors could not abolish afferent depolarization in the presence of bicuculline. Depolarization comparable in amplitude to DRPs, could be produced in tetrodotoxin-treated cords by elevation of [K+]e to the levels reported to develop in the neonatal rat spinal cord in response to dorsal root stimulation. A mechanism involving potassium transients produced by neuronal activity therefore is suggested to be the major cause of the GABA-independent afferent depolarization reported in our study. Possible implications of potassium transients in the developing and the adult mammalian spinal cord are discussed.  相似文献   

5.
A new series of 2-arylmethyl-1,4-benzoquinones (2) was synthesized for evaluation of their pharmacological activities. These compounds showed significant inhibition of platelet aggregation induced by arachidonic acid (AA) and some of them possessed a protective effect against endothelial cell injury caused by hydrogen peroxide.  相似文献   

6.
A putative role for bradykinin has been proposed in the processing of sensory information at the level of the spinal cord. Autoradiographic studies have demonstrated the presence of B2 kinin receptor binding sites in superficial laminae of the dorsal horn and a down-regulation of those receptors in rat models of pain injury. In this study, classical immunocytochemistry and confocal microscopy immunofluorescence were used first to localize bradykinin-like immunoreactivity in all major spinal cord segments of naive rats; second, to assess bradykinin-like immunoreactivity changes that occur in animals subjected to various chemical treatments and surgical lesions. High densities of bradykinin-like immunoreactivity were observed in motoneuron of the ventral horn, deeper laminae and nucleus dorsalis of the dorsal horn. Higher magnification of ventral horn showed strong immunostaining of motoneuron perikaryas and their proximal processes. Two types of bradykinin-like immunoreactivity immunostained cellular bodies were observed in deeper laminae of the dorsal horn. These interneurons, morphologically corresponding to islets and antenna-type cells project dendrites to adjacent laminae. Furthermore, numerous strongly marked dendrites, transversally cut, suggest the presence of projection neurons to higher cervical centres. Following unilateral lumbar dorsal rhizotomy (L1-L6) or peripheral lesion of the sciatic nerve, important increases of bradykinin-like immunoreactivity were found in laminae III and IV of the ipsilateral dorsal horn. In contrast, significant decreases of immunodeposits were observed in both cell bodies and numerous dendrites of motoneuron surrounding neuropil. Specific destructions of sensory afferent fibres with capsaicin or selective activation of kallikreins with melittin caused increases of bradykinin-like immunoreactivity in both the dorsal and ventral horns of the spinal cord. These results which demonstrate the cellular localization of bradykinin-like immunoreactivity in both dorsal and ventral horns of the rat spinal cord, further reveal the plasticity of this non-sensory peptidergic system following various chemical and surgical treatments. Hence, these anatomical findings along with earlier functional and receptor autoradiographic studies reinforce the putative role of bradykinin in sensory function.  相似文献   

7.
8.
9.
Brainerd and Reyna (1998, this issue) have described fuzzy-trace theory as a basic-processing theory, emphasizing age differences in children's disposition to use verbatim versus gist representations. The theoretical climate of the 1980's, when fuzzy-trace theory was first formulated, is described. Fuzzy-trace theory integrated new ideas about how cognitive development was viewed into a coherent framework, which only gradually gained acceptance as critical aspects of the theory were confirmed, counterintuitive findings were predicted and demonstrated, and other researchers began applying the theory. Fuzzy-trace theory converges with other contemporary theoretical accounts in raising the general issue of the relation between two developing representational systems and is consistent with the idea that immature (a bias toward verbatim encoding) and mature (a bias toward gist encoding) have both advantages and disadvantages at different times in development. By integrating the theory with ideas from social-contextual perspectives, the theory may have a greater impact in the future for issues of social significance.  相似文献   

10.
In order to examine the relationship between myelination and sensitivity to anoxia in adult white matter, we studied action potential conduction in the spinal cord dorsal column of adult rats in which focal demyelinating lesions had been produced using ethidium bromide/X-irradiation. Acutely isolated spinal cords from control rats and following demyelination were maintained in vitro at 36 degrees C and compound action potentials were studied following supramaximal stimulation. The compound action potential was totally abolished within 12 min of the onset of anoxia in normal dorsal columns, but was not abolished until 50 min following the onset of anoxia in demyelinated dorsal columns. Compound action potentials showed significantly greater recovery (to 58.1 +/- 12.2% of control amplitude) in demyelinated dorsal columns compared to controls (30.8 +/- 5.3%) following 120 min of reoxygenation. These results show that focal demyelination is associated with reduced sensitivity to anoxia within white matter of the adult spinal cord.  相似文献   

11.
We have investigated the expression, using immunohistochemical and Western blot methods, of some cytoskeletal proteins including desmin, vimentin, actin, alpha-actinin, and ubiquitin in hereditary myopathy of the diaphragmatic muscles in Holstein-Friesian cattle (the histochemical and electron microscopical aspects have been previously reported). Immunohistochemically, the expression of desmin was observed strongly in the subsarcolemmal regions, but was lacking or faint in the area corresponding to the core-like structures. Vimentin showed almost the same localization as desmin, but no activity could be observed in the core-like structures. In addition, the core-like structures showed strong immunoreactivity for actin and ubiquitin, but no immunoreactivity for alpha-actinin. F-actin stained with phalloidin-tetramethyl-rhodamine was strongly positive in irregular spots that corresponded to the core-like structures, but was negative for desmin-positive regions. Western blot analysis of the diseased muscles revealed a significant increase in the amount of desmin and vimentin immunoreactivities and similar amounts of actin and alpha-actinin compared with the control muscles. Two-dimensional electrophoresis revealed no isoforms of desmin, suggesting the absence of abnormal phosphorylated forms of desmin. Since the co-localization of desmin and vimentin and the absence of phosphorylated desmin suggest that the overexpression of desmin may be reflected in the reactive change or regenerating process, the present myopathy should be regarded as an entity separate from desmin-storage myopathy or desmin-related myopathies. We also discuss the possibility that the present myopathy could be considered as myofibrillar myopathy, a recently proposed nosological entity.  相似文献   

12.
To understand the role of opioids and their receptors in chronic pain following peripheral nerve injury, we have studied the mu-opioid receptor in rat and monkey lumbar 4 and 5 dorsal root ganglion neurons and the superficial dorsal horn of the spinal cord under normal circumstances and after peripheral axotomy. Our results show that many small neurons in rat and monkey dorsal root ganglia, and some medium-sized and large neurons in rat dorsal root ganglia, express mu-opioid receptor-like immunoreactivity. Most of these neurons contain calcitonin gene-related peptide. The mu-opioid receptor was closely associated with the somatic plasmalemma of the dorsal root ganglion neurons. Both mu-opioid receptor-immunoreactive nerve fibers and cell bodies were observed in lamina II of the dorsal horn. The highest intensity of mu-opioid receptor-like immunoreactivity was observed in the deep part of lamina II. Most mu-opioid receptor-like immunoreactivity in the dorsal horn originated from spinal neurons. A few mu-opioid receptor-positive peripheral afferent terminals in the rat and monkey dorsal horn were calcitonin gene-related peptide-immunoreactive. In addition to pre- and post-junctional receptors in rat and monkey dorsal horn neurons, mu-opioid receptors were localized on the presynaptic membrane of some synapses of primary afferent terminals in the monkey dorsal horn. Peripheral axotomy caused a reduction in the number and intensity of mu-opioid receptor-positive neurons in the rat and monkey dorsal root ganglia, and of mu-opioid receptor-like immunoreactivity in the dorsal horn of the spinal cord. The decrease in mu-opioid receptor-like immunoreactivity was more pronounced in the monkey than in the rat dorsal root ganglia and spinal cord. It is probable that there was a parallel trans-synaptic down-regulation of mu-opioid-like immunoreactivity in local dorsal horn neurons of the monkey. These data suggest that one factor underlying the well known insensitivity of neuropathic pain to opioid analgesics could be due to a marked reduction in the number of mu-opioid receptors in the axotomized sensory neurons and in interneurons in the dorsal horn of the spinal cord.  相似文献   

13.
We have examined the expression of the NR-1 subunit of the glutamate NMDA receptor and the immediate early gene c-jun in lumbar spinal cord following neonatal common peroneal nerve crush. The expression of these two genes was studied up to 12 days post-injury (crush occurring at neonatal day P2). The levels of both NR-1 and c-jun mRNA were increased in spinal cord ipsilateral to the site of crush, the induction of mRNA was shown to occur in a time-dependent manner, peaking at 5 days post-injury. The level of NR-1 mRNA showed the most substantial change following nerve crush, increasing 5 times from 4 h to 5 days post-crush. An increase in expression of NR-1 was also observed in spinal cord contralateral to the injury, although quantitatively this was a smaller effect. These results indicate that early postnatal injury causes a significant increase in the expression of NR-1 mRNA which is most marked at 5 days after injury. This period coincides with that of maximum cell death and indicates that the selective induction of NR-1 could underlie the mechanism of this cell death.  相似文献   

14.
During embryonic development, most neuronal populations undergo a process usually referred to as naturally occurring neuronal death. For motoneurons (MTNs) of the lumbar spinal cord of chick embryos, this process takes place in a well defined period of time, between embryonic days 6 and 10 (E6-E10). Neurotrophins (NTs) are the best characterized family of neurotrophic factors and exert their effects through activation of their specific Trk receptors. In vitro and in vivo studies have demonstrated that rodent motoneurons survive in response to BDNF, NT3, and NT4/5. In contrast, the trophic dependencies of chicken motoneurons have been difficult to elucidate, and various apparently conflicting reports have been published. In the present study, we describe how freshly isolated motoneurons from E5.5 chick embryos did not respond to any neurotrophin in vitro. Yet, because motoneurons were maintained alive in culture in the presence of muscle extract, they developed a delayed specific survival response to BDNF, NT3, and NT4/5 that is clearly dose-dependent, reaching saturation at doses of 100 pg/ml. This trophic response correlated with increasing expression of the corresponding functional receptors TrkB and TrkC. Moreover, TrkB receptor is able to become autophosphorylated and to activate classical intracellular signaling pathways such as the extracellular signal-regulated protein kinase when it is stimulated with its cognate ligand BDNF. Therefore, our results reconcile the reported differences between in vivo and in vitro studies on the ability of chicken MTNs to respond to some members of the neurotrophin family of trophic factors.  相似文献   

15.
In order first to overcome the difficulties in understanding the increasing amount of information available regarding the mammalian somatosensory thalamus, and then to correlate the findings among different species and integrate them into a general concept of thalamic organization, the present study investigated the spinothalamic and medial lemniscal projections in Madagascan hedgehog tenrecs (Echinops telfairi and Setifer setosus). Tracer substances were injected into the dorsal column nuclei and into spinal segments at various levels; additional injections were made into the inferior colliculus. The ascending somesthetic projections were to predominantly contralateral posterolateral target areas, and were almost mirror-like on both sides to intralaminar and medial thalamic nuclei. The densest and most extensive projections, originating mainly from the high cervical spinal cord and the dorsal column nuclei, reached the posterolateral thalamus caudal to the lateral geniculate nucleus. This region was difficult to subdivide cytoarchitecturally; nevertheless, on the basis of its labeling pattern, several subdivisions could be described and preliminary named. Some of them compared tentatively with the internal portion of the medial geniculate nucleus (GM) and the ventral posterior nuclear complex (VPC) in more differentiated mammals. The most prominent subdivision, however, located subjacent to the lateral surface of the brainstem, was shown to receive additional fibers from the inferior colliculus. This region might be considered a further subdivision of GM, VPC, a perigeniculate area, and/or a region of its own not comparable at present, with thalamic regions in other mammals. On the other hand, it may also be a remnant of the hypothetical, diffuse multimodal region from which GM and VPC have possibly evolved.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Using in situ hybridization, the expression of mRNA encoding galanin, vasoactive intestinal polypeptide (VIP), neuropeptide Y (NPY), and nitric oxide synthase (NOS), respectively, was studied in lumbar dorsal root ganglia of rats given a single s.c. dose of 300 micrograms kg-1 resiniferatoxin (RTX), an ultrapotent capsaicin analogue. In control animals, 10% of the DRG neurones were positive for galanin mRNA, whereas no message for VIP, NPY or NOS could be detected. One week after RTX treatment, a markedly increased number (approximately 30%) of the neurones expressed galanin mRNA. Simultaneously, VIP and NOS mRNA became detectable in 6-8% of the neurones. The number of galanin-positive neurones declined after 2 weeks and returned to control levels by 8 weeks. The increase in number of VIP-, or NOS-positive neurones persisted up to 4 weeks after RTX treatment and declined thereafter. Also, there was a small increase in NPY mRNA-positive neurones. In parallel immunohistochemical experiments, similar increases were observed for galanin message-associated protein (GMAP)-, VIP- and NOS-like immunoreactivities. Our findings suggest that RTX can cause changes (messenger plasticity) in galanin, VIP and NOS expression in capsaicin-sensitive sensory neurones of the rat, similar to those described following axotomy.  相似文献   

17.
To determine longitudinal changes in physical capacity and physical strain during activities of daily living (ADL), 37 men with spinal cord injuries (C4/5-L5) performed an exercise test and various ADL on two occasions (T1 and T2; interval 34.5 +/- 1.5 months). Parameters of physical capacity were aerobic power (VO(2peak)) and maximal power output (PO(max)). Physical strain was estimated by the heart rate response relative to the heart rate reserve. VO(2peak) at T2 (1.75 +/- 0.55 1*min(1)) did not significantly differ from that at T1 (1.67 + 0.47 1*min(-1)). Absolute PO max improved (P < 0.05) from 64.9 +/- 25.9 (T1) to 71.7 +/- 27.2 W (T2), whereas relative PO(max) did not change. Activity level, time since injury, change in body mass, and occurrence of rehospitalization were the most important predictors of changes in physical capacity. Changes in relative VO(2peak) were related (P < 0.05) to changes in strain during transfers to the shower wheelchair (r = -0.39) and shower seat (r = -0.46), and during the curb ascent (r = -0.47). In conclusion, the hypothesized decline in physical capacity did not occur over the 3-yr period. Maintenance of physical capacity, which may in part be achieved through sport participation and improved medical care, together with avoidance of excessive body mass, may be useful to prevent high levels of strain during ADL.  相似文献   

18.
The genetic mechanisms that control asymmetric cell divisions--yielding progeny cells that differ from one another--have been conserved among prokaryotes, eukaryotic microbes, and higher organisms. All use the paradigm of regulatory protein localization as a way of translating genetic information into three-dimensional space.  相似文献   

19.
Quantitative receptor binding autoradiography was used to study the NK1, NMDA, 5HT1a, and 5HT2 receptor binding densities in the adult rat lumbar spinal cord from 3 days to 20 weeks following a unilateral crush lesion of the sciatic nerve. NK1 binding density increased unilaterally in the superficial dorsal horn on the side of the sciatic crush to reach levels 60% above controls by 4 weeks following the lesion and returned to control values by 12 weeks. NMDA binding density increased bilaterally and equally in both the dorsal and ventral horns to reach 300% of control values at 2 weeks following the crush and returned to near control values by 20 weeks following the lesion. Serotonergic receptor binding did not change. The changes in NK1 receptor binding density on postsynaptic dorsal horn cells are consistent with a response to the decrease and recovery in the synthesis and transport of tachykinins by the dorsal root ganglion cells following peripheral nerve injury. the bilateral changes in NMDA receptor binding are more likely mediated by polysynaptic pathways in the spinal cord that respond to the changes in metabolic events of the dorsal root ganglion cells evoked by axotomy and regeneration.  相似文献   

20.
Previous studies have shown an enhanced expression of Fos protein-like immunoreactivity in the lumbar spinal cord of rats with complete spinal transection following persistent hindpaw inflammation. To further locate the spinal pathways responsible for these effects, we compared the inflammation-evoked Fos expression in rats with bilateral lesions of the dorsolateral (DLFX) or ventrolateral (VLFX) funiculus, and with rats with a sham operation. The results indicate that the number of Fos-labeled neurons was significantly increased in all laminae of the dorsal horn ipsilateral to the inflamed hindpaw and in contralateral deep dorsal horn in both DLFX and VLFX rats compared to sham-operated rats. Moreover, when comparing DLFX and VLFX rats, in the ipsilateral spinal cord, DLFX resulted in more Fos expression in the deep dorsal horn; in contrast, a larger number of Fos-labeled cells in superficial laminae was observed in VLFX rats. These results suggest that modulatory systems, which descend in both DLF and VLF pathways, mediate the enhanced net descending nociceptive inhibition after persistent inflammation, although the supraspinal sites of origin of each pathway are likely functionally diverse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号