首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Partial nerve injury is more likely to cause neuropathic pain than complete nerve injury. We have compared the changes in neuropeptide expression in primary sensory neurons which follow complete and partial injuries to determine if these might be involved. Since more neurons are damaged by complete injury, we expected that complete sciatic nerve injury would simply cause greater increases in neuropeptide Y and vasoactive intestinal peptide than partial injury. We examined neuropeptide Y and vasoactive intestinal peptide immunoreactivities in L4 and L5 dorsal root ganglia, the dorsal horn of L4-L5 spinal cord, and the gracile nuclei of rats killed 14 days after unilateral complete sciatic nerve transection, partial sciatic nerve transection and chronic constriction injury of the sciatic nerves. In all three groups of rats, neuropeptide Y- and vasoactive intestinal peptide-immunoreactive neurons were increased in the ipsilateral L4 and L5 dorsal root ganglion when compared with the contralateral side. Most neuropeptide Y-immunoreactive neurons were of medium and large size, but a few were small. Neuropeptide Y-immunoreactive axonal fibers were increased from laminae I to IV, and vasoactive intestinal peptide-immunoreactive axonal fibers were increased in laminae I and II, of the ipsilateral dorsal horn of L4-L5 spinal cord. The increases of neuropeptide Y and vasoactive intestinal peptide immunoreactivities in the dorsal horn were similar among the three groups. However, only after constriction injury were some vasoactive intestinal peptide-immunoreactive neurons seen in the deeper laminae of the ipsilateral dorsal horn. Robust neuropeptide Y-immunoreactive axonal fibers and some neuropeptide Y-immunoreactive cells were seen in the ipsilateral gracile nuclei of all three groups of animals, but neuropeptide Y-immunoreactive cells were more prominent after constriction injury. Contrary to our expectations, partial and complete sciatic nerve injuries induced similar increases in neuropeptide Y and vasoactive intestinal peptide in lumbar dorsal root ganglion neurons and their central projections in the dorsal horn and the gracile nuclei two weeks after injury. Some neurons whose axons were spared by partial injury may also increase neuropeptide Y or vasoactive intestinal peptide expression. Altered neuropeptide release from these functional sensory neurons may play a role in neuropathic pain.  相似文献   

2.
Neuropeptide expression in primary sensory neurons is highly plastic in response to peripheral nerve axotomy. While neuropeptide changes following complete sciatic nerve injury have been extensively studied, much less is known about the effects of partial sciatic nerve injuries on neuropeptide plasticity. Galanin. a possible endogenous analgesic peptide, was up-regulated in primary sensory neurons following complete sciatic nerve injury. We investigated the effects of partial sciatic nerve injuries on galanin expression in primary sensory neurons, and compared this effect with that after complete sciatic nerve injury. Complete transection, partial transection and chronic constriction injury were made, respectively, on the sciatic nerves of three groups of rats at high thigh level. Animals were allowed to survive for four and 14 days before being killed. L4 and L5 dorsal root ganglia, L4 5 spinal cord and lower brainstem were processed for galanin immunocytochemical staining. After all three types of sciatic nerve injuries, galanin-immunoreactive neurons were significantly increased in the ipsilateral dorsal root ganglia, and galanin-immunoreactive axonal fibres were dramatically increased in the superficial laminae of the dorsal horn and the gracile nuclei, compared to the contralateral side. However, in partial injury models, the percentages of galanin-immunoreactive dorsal root ganglion neurons were significantly higher than in complete nerve transection. Size frequency distribution analysis detected that more medium- and large-size galanin-immunoreactive dorsal root ganglion neurons were present after partial nerve transection and constriction injury than after complete nerve transection. Using a combined approach of retrograde tracing of flurorescent dyes and galanin immunostaining, we found that a partial transection increased the proportions of galanin-immunoreactive neurons among both axotomized and non-axotomized neurons. Galanin-immunoreactive axonal fibres were not only detected in the superficial laminae, but also in the deeper laminae of the dorsal horn of partial injury animals. Furthermore, more galanin-immunoreactive axonal fibres were observed in the ipsilateral gracile nuclei of partially injured rats than in completely injured rats. We conclude that partial sciatic nerve injuries induced greater galanin up-regulation in medium- and large-size dorsal root ganglion neurons than complete sciatic nerve injury. Galanin expression in primary sensory neurons seems to be differentially regulated following partial and complete sciatic nerve injuries.  相似文献   

3.
A putative role for bradykinin has been proposed in the processing of sensory information at the level of the spinal cord. Autoradiographic studies have demonstrated the presence of B2 kinin receptor binding sites in superficial laminae of the dorsal horn and a down-regulation of those receptors in rat models of pain injury. In this study, classical immunocytochemistry and confocal microscopy immunofluorescence were used first to localize bradykinin-like immunoreactivity in all major spinal cord segments of naive rats; second, to assess bradykinin-like immunoreactivity changes that occur in animals subjected to various chemical treatments and surgical lesions. High densities of bradykinin-like immunoreactivity were observed in motoneuron of the ventral horn, deeper laminae and nucleus dorsalis of the dorsal horn. Higher magnification of ventral horn showed strong immunostaining of motoneuron perikaryas and their proximal processes. Two types of bradykinin-like immunoreactivity immunostained cellular bodies were observed in deeper laminae of the dorsal horn. These interneurons, morphologically corresponding to islets and antenna-type cells project dendrites to adjacent laminae. Furthermore, numerous strongly marked dendrites, transversally cut, suggest the presence of projection neurons to higher cervical centres. Following unilateral lumbar dorsal rhizotomy (L1-L6) or peripheral lesion of the sciatic nerve, important increases of bradykinin-like immunoreactivity were found in laminae III and IV of the ipsilateral dorsal horn. In contrast, significant decreases of immunodeposits were observed in both cell bodies and numerous dendrites of motoneuron surrounding neuropil. Specific destructions of sensory afferent fibres with capsaicin or selective activation of kallikreins with melittin caused increases of bradykinin-like immunoreactivity in both the dorsal and ventral horns of the spinal cord. These results which demonstrate the cellular localization of bradykinin-like immunoreactivity in both dorsal and ventral horns of the rat spinal cord, further reveal the plasticity of this non-sensory peptidergic system following various chemical and surgical treatments. Hence, these anatomical findings along with earlier functional and receptor autoradiographic studies reinforce the putative role of bradykinin in sensory function.  相似文献   

4.
In the present study we show that, in contrast to the rat, injection of cholera toxin B-subunit (CTB) into the intact sciatic nerve of Macaca mulatta monkey gives rise to labelling of a sparse network of fibers in laminae I-II of spinal cord and of some mainly small dorsal root ganglion (DRG) neurons. Twenty days after sciatic nerve cut, the percentage of CTB-positive lumbar 5 (L5) DRG neuron profiles increased from 11% to 73% of all profiles. In the spinal cord, a marked increase in CTB labelling was seen in laminae I, II, and the dorsal part of lamina III. In the rat L5 DRGs, 18 days after sciatic nerve cut, the percentage of CTB- and CTB conjugated to horseradish peroxidase (HRP)-labelled neuron profiles increased from 45% to 81%, and from 54% to 87% of all neuron profiles, respectively. Cell size measurements in the rat showed that most of the CTB-positive neuron profiles were small in size after axotomy, whereas most were large in intact DRGs. In the rat spinal dorsal horn, a dense network of CTB-positive fibers covered the whole dorsal horn on the axotomized side, whereas CTB-labelled fibers were mainly seen in laminae III and deeper laminae on the contralateral side. A marked increase in CTB-positive fibers was also seen in the gracile nucleus. The present study shows that in both monkey and rat DRGs, a subpopulation of mainly small neurons acquires the capacity to take up CTB/CTB-HRP after axotomy, a capacity normally not associated with these DRG neurons. These neurons may transganglionically transport CTB and CTB-HRP. Thus, after peripheral axotomy, CTB and CTB-HRP are markers not only for large but also for small DRG neurons and, thus, possibly also for both myelinated and unmyelinated primary afferents in the spinal dorsal horn. These findings may lead to a reevaluation of the concept of sprouting, considered to take place in the dorsal horn after peripheral nerve injury.  相似文献   

5.
We investigated the retrograde axonal transport of 125I-labeled neurotrophins (NGF, BDNF, NT-3, and NT-4) from the sciatic nerve to dorsal root ganglion (DRG) sensory neurons and spinal motor neurons in normal rats or after neuronal injury. DRG neurons showed increased transport of all neurotrophins following crush injury to the sciatic nerve. This was maximal 1 day after sciatic nerve crush and returned to control levels after 7 days. 125I-BDNF transport from sciatic nerve was elevated with injection either proximal to the lesion or directly into the crush site and after transection of the dorsal roots. All neurotrophin transport was receptor-mediated and consistent with neurotrophin binding to the low-affinity neurotrophin receptor (LNR) or Trk receptors. However, transport of 125I-labeled wheat germ agglutinin also increased 1 day after sciatic nerve crush, showing that increased uptake and transport is a generalized response to injury in DRG sensory neurons. Spinal cord motor neurons also showed increased neurotrophin transport following sciatic nerve injury, although this was maximal after 3 days. The transport of 125I-NGF depended on the expression of LNR by injured motor neurons, as demonstrated by competition experiments with unlabeled neurotrophins. The absence of TrkA in normal motor neurons or after axotomy was confirmed by immunostaining and in situ hybridization. Thus, increased transport of neurotrophic factors after neuronal injury is due to multiple receptor-mediated mechanisms including general increases in axonal transport capacity.  相似文献   

6.
Calcitonin gene-related peptide in sensory primary afferent neurons has an excitatory effect on postsynaptic neurons and potentiates the effect of substance P in the rat spinal dorsal horn. It has been established that calcitonin gene-related peptide expression in dorsal root ganglion neurons is depressed, and the effect of calcitonin gene-related peptide on dorsal horn neurons is attenuated, following peripheral nerve injury. We report here that a subpopulation of injured dorsal root ganglion neurons show increased expression of calcitonin gene-related peptide. Using in situ hybridization and the retrograde tracer, FluoroGold, we detected an increased number of medium- to large-sized rat dorsal root ganglion neurons projecting to the gracile nucleus that expressed alpha-calcitonin gene-related peptide messenger RNA following spinal nerve transection. Immunohistochemistry revealed a significant increase in calcitonin gene-related peptide immunoreactivity in the gracile nucleus and in laminae III-IV of the spinal dorsal horn. These results indicate that a subpopulation of dorsal root ganglion neurons express alpha-calcitonin gene-related peptide messenger RNA in response to peripheral nerve injury, and transport this peptide to the gracile nucleus and to laminae III-IV of the spinal dorsal horn. The increase of the excitatory neuropeptide, calcitonin gene-related peptide, in sites of primary afferent termination may affect the excitability of postsynaptic neurons, and have a role in neuronal plasticity following peripheral nerve injury.  相似文献   

7.
We have examined the mechanisms underlying Abeta-evoked c-fos expression in the dorsal horn and gracile nucleus following either sciatic nerve section or crush injury. The results indicate that in the spinal cord Abeta-evoked c-fos does not depend on primary afferent sprouting but is associated with the disconnection from the peripheral target since its expression in the dorsal horn reverts to normal after crush injury when regeneration occurs but persists after cut and ligation where regeneration is prevented. In contrast, however, Abeta-evoked c-fos expression in the gracile nucleus may be under some other control since its expression appears independent of peripheral nerve regeneration.  相似文献   

8.
Previous studies have shown an enhanced expression of Fos protein-like immunoreactivity in the lumbar spinal cord of rats with complete spinal transection following persistent hindpaw inflammation. To further locate the spinal pathways responsible for these effects, we compared the inflammation-evoked Fos expression in rats with bilateral lesions of the dorsolateral (DLFX) or ventrolateral (VLFX) funiculus, and with rats with a sham operation. The results indicate that the number of Fos-labeled neurons was significantly increased in all laminae of the dorsal horn ipsilateral to the inflamed hindpaw and in contralateral deep dorsal horn in both DLFX and VLFX rats compared to sham-operated rats. Moreover, when comparing DLFX and VLFX rats, in the ipsilateral spinal cord, DLFX resulted in more Fos expression in the deep dorsal horn; in contrast, a larger number of Fos-labeled cells in superficial laminae was observed in VLFX rats. These results suggest that modulatory systems, which descend in both DLF and VLF pathways, mediate the enhanced net descending nociceptive inhibition after persistent inflammation, although the supraspinal sites of origin of each pathway are likely functionally diverse.  相似文献   

9.
To examine the question of whether or not prevention of axonal regrowth after injury affects the molecular responses of neurons to axotomy, Northern blotting and in situ hybridization were used to study changes in the mRNA levels of neurofilament (NF) proteins and tubulins in rat dorsal root ganglion (DRG) cells. Adult male rats sustained either a crush lesion of the mid-sciatic nerve (regeneration-permissive condition) or a cut lesion of the sciatic nerve combined with ligation of the proximal nerve stump and removal of a large segment of the distal nerve (regeneration-prohibitive condition). At 14 days post-injury, the relative levels of the low (NF-L) and middle (NF-M) molecular weight NF protein mRNAs, as well as those of beta II- and beta III-tubulin, were examined in the L4 and L5 DRG. The data showed that the levels of NF-L and NF-M mRNAs decreased while beta II- and beta III-tubulin mRNA levels increased in the DRG after either crush axotomy or cut/ligation axotomy of the sciatic nerve, suggesting that the elicitation of these molecular changes by axon disconnection is independent of the ultimate success or failure of the axonal regrowth process. However, cut/ligation axotomy had a more pronounced effect than did crush injury on the mRNA changes. This result suggests that feedback mechanisms from regrowing axons are important in regulating the extent of the cytoskeletal mRNA changes in injured neurons.  相似文献   

10.
Nerve growth factor (NGF) receptor-like immunoreactivity has been demonstrated in the normal human adult spinal cord using the monoclonal antibody ME20.4. Intense immunoreactivity was associated with fibres and terminals in the substantia gelatinosa. In lamina IX the neuropil demonstrated punctate staining, the motor neurons themselves being negative. At thoracic levels occasional neurons of the intermediolateral column cell group were NGF receptor positive. Fine axonal and punctate terminal reactivity was observed in the gracile fasciculus, corresponding to axons in transverse section. Similar, though slightly less dense immunoreactivity was observed in the cuneate fasciculus. The demonstration of NGF receptor immunoreactivity may provide a useful marker of sensory innervation in the human spinal cord.  相似文献   

11.
The response of the mature central nervous system (CNS) to injury differs significantly from the response of the peripheral nervous system (PNS). Axotomized PNS neurons generally regenerate following injury, while CNS neurons do not. The mechanisms that are responsible for these differences are not completely known, but both intrinsic neuronal and extrinsic environmental influences are likely to contribute to regenerative success or failure. One intrinsic factor that may contribute to successful axonal regeneration is the induction of specific genes in the injured neurons. In the present study, we have evaluated the hypothesis that expression of the immediate early gene c-jun is involved in a successful regenerative response. We have compared c-Jun expression in dorsal root ganglion (DRG) neurons following central or peripheral axotomy. We prepared animals that received either a sciatic nerve (peripheral) lesion or a dorsal rhizotomy in combination with spinal cord hemisection (central lesion). In a third group of animals, several dorsal roots were placed into the hemisection site along with a fetal spinal cord transplant. This intervention has been demonstrated to promote regrowth of severed axons and provides a model to examine DRG neurons during regenerative growth after central lesion. Our results indicated that c-Jun was upregulated substantially in DRG neurons following a peripheral axotomy, but following a central axotomy, only 18% of the neurons expressed c-Jun. Following dorsal rhizotomy and transplantation, however, c-Jun expression was upregulated dramatically; under those experimental conditions, 63% of the DRG neurons were c-Jun-positive. These data indicate that c-Jun expression may be related to successful regenerative growth following both PNS and CNS lesions.  相似文献   

12.
The effect of morphine-3-glucuronide (M3G) on noxious stimulus-evoked Fos protein-like immunoreactivity in the rat spinal cord were assessed by ABC method. It was found that a dose-dependent increase of Fos-like immunoreactive neurons could be induced by M3G intrathecal injection followed by formaline injection into hindpaw. With high dosage M3G (1.1 x 10(-7) mole), dense Fos-like labelling was found in the superficial and the deep dorsal horn bilaterally, While with low dosage M3G (5.4 x 10(-8) and 1.1 x 10(-8) mole), most of the positively labelled neurons were only found in laminae I and II of the ipsilateral dorsal horn to the injured paw. The above results revealed that M3G exerts a potentiating effect on the noxious stimulus-evoked Fos protein-like immunoreactivity in the rat spinal cord.  相似文献   

13.
In order to study central neuronal components involved in subcutaneous (s.c.) bee venom-induced persistent pain (a new tonic pain model), we use Fos immunostaining technique to study the spatial and temporal patterns of neuronal activity in the spinal cord of anesthetized rats. Following intraplantar bee venom injection, Fos-like immunoreactive (ir) neurons were only seen from L1 to S3 rostrocaudally with distinct distribution at L4-5 segments. At segments of L1-2 and S1-3, Fos-ir labelings were diffusely and symmetrically distributed on both sides of the gray matter; however, at L4-5 segments, Fos-ir neurons were densely localized in medial portion of laminae I-II, less densely in laminae V-VI and a few in laminae VII and X ipsilateral to the injection side. No Fos labeling was seen in ventral horn of the spinal cord at L4-5 segments. Fos protein began to express only within lamina I at 0.5 h, but increased over the whole dorsal horn at 1 h and reached peak labeling at 2 h after bee venom. Expression of c-Fos in laminae I-II decreased at 4 h, and completely disappeared at 24 h, however, labeling in laminae V-VI disappeared much slowly and existed even at 96 h after bee venom. Within laminae III-IV, Fos-ir neurons could not be seen at 0.5 h, but began to be seen at 1 h and appeared to exist even at 24 h after bee venom. Systemic morphine suppressed c-Fos expression dose-dependently in both superficial and deep layers of dorsal horn and the latter region was much more sensitive to morphine than the former one. The present results demonstrated that prolonged neuronal activities in superficial and deep layers of dorsal horn were essential to mediation of bee venom induced tonic pain and may have different roles in generation and/or modulation of spontaneous pain and hyperalgesia and allodynia.  相似文献   

14.
Behavioral and electrophysiological studies have shown that a noxious stimulus applied to one part of the body can reduce the response to a subsequent noxious stimulus elsewhere on the body. This phenomenon is referred to as diffuse noxious inhibitory controls (DNIC). In the present study we used immunocytochemical labeling for the Fos protein product of the c-fos proto-oncogene to determine the location of lumbar spinal nociresponsive neurons that are inhibited by a spatially remote noxious stimulus. Repetitive hindpaw pinch evoked pronounced Fos-like immunoreactivity in the superficial and deep laminae of the lumbar spinal cord. Placing the tail in 50 degrees C water before each hindpaw pinch significantly reduced Fos-like immunoreactivity in these regions. These data demonstrate that nociresponsive neurons in both the superficial and deep laminae of the spinal cord are sensitive to inhibition by a spatially remote noxious conditioning stimulus.  相似文献   

15.
To assess the therapeutic potential of brain-derived neurotrophic factor (BDNF) in clinics, we extensively investigated the effects of BDNF on adult motor neurons in a rat spinal root avulsion model. Intrathecal administration of BDNF immediately after the spinal root avulsion greatly protected against the motor neuron cell death. BDNF also showed a protective effect on the atrophy of soma and on the reduction of transmitter-related enzymes such as choline acetyl transferase and acetylcholine esterase. Very interestingly, BDNF induced axonal outgrowth of severely damaged motor neurons at the avulsion site. The BDNF administration following 2-week treatment with phosphate-buffered saline after avulsion prevented further augmentation of cell death and reversed cholinergic transmitter-related enzyme deficiency. BDNF was demonstrated to possess a wide variety of biological effects on survival, soma size, cholinergic enzymes, and axonal outgrowth of adult motor neurons. These results provide a rationale for BDNF treatment in motor neuron diseases such as spinal cord injury and amyotrophic lateral sclerosis.  相似文献   

16.
Following spinal cord injury, projection neurons are frequently axotomized and many of the cells subsequently die. One goal in spinal injury research is to preserve damaged neurons so that ultimately they are accessible to regeneration-promoting strategies. Here we ask if neurotrophin treatment can prevent atrophy and death of axotomized sensory projection neurons. In adult rats, a hemisection was made in the thoracic spinal cord and axotomized neurons were retrogradely labelled with Fluoro-Gold. Four distinct populations of cells were identified in the lumbar spinal cord, and both numbers and sizes of labelled cells were assessed at different time points postlesion. A progressive and significant degeneration was observed over time with severe atrophy apparent in all cell populations and significant cell loss evident by 4 weeks postlesion. This time point was used to assess neurotrophin effects. Hemisected rats were treated with either neurotrophin 3 (NT-3) or brain-derived neurotrophic factor (BDNF, 12 microg/day for each), or a vehicle solution, delivered continuously to the lesion site via an osmotic minipump. Treatment with NT-3, but not BDNF, completely reversed cell atrophy in three of the four cell populations and also induced a significant increase in the number of surviving cells. In situ hybridization experiments showed trkB and trkC mRNA to be expressed in the majority of ascending spinal projection neurons, suggesting that these cells should be responsive to both BDNF and NT-3. However, only NT-3 treatment was neuroprotective, indicating that BDNF may not have reached the cell bodies of injured neurons. These results demonstrate that NT-3 may be of benefit in preventing the secondary cell loss that occurs following spinal injury.  相似文献   

17.
Dynorphin, an endogenous opioid, may contribute to secondary nervous tissue damage following spinal cord injury. The temporal and spatial distribution of preprodynorphin (PPD) mRNA expression in the injured rat spinal cord was examined by in situ hybridization. Rats were subjected to traumatic spinal cord injury at the T13 spinal segment using the weight-drop method. Motor function of these rats was evaluated by their ability to maintain their position on an inclined plane. Two double-labeling experiments revealed that increased PPD mRNA and dynorphin peptide expression were found exclusively in dorsal horn neurons. Neurons exhibiting an increase in the level of PPD mRNA were concentrated in the superficial laminae and the neck of dorsal horn within several spinal segments from the epicenter of the injury at 24 and 48 h after injury. A number of neurons showing increased PPD mRNA were found in gray matter adjacent to the injury areas. Segments caudal to the injury site exhibited a long-lasting elevation of PPD mRNA in neurons, compared to the rostral segments. The number of neurons expressing PPD mRNA in each rat was significantly positively correlated with its motor dysfunction. These findings suggest that increased expression of dynorphin mRNA and peptide in dorsal horn neurons occurs after traumatic spinal cord injury. This also supports the hypothesis that the dynorphin has a pathological role in secondary tissue damage and neurological dysfunction after spinal cord injury.  相似文献   

18.
Complete sciatic nerve injury reduces substance P (SP) expression in primary sensory neurons of the L4 and L5 dorsal root ganglia (DRG), due to loss of target-derived nerve growth factor (NGF). Partial nerve injury spares a proportion of DRG neurons, whose axons lie in the partially degenerating nerve, and are exposed to elevated NGF levels from Schwann and other endoneurial cells involved in Wallerian degeneration. To test the hypothesis that SP is elevated in spared DRG neurons following partial nerve injury, we compared the effects of complete sciatic nerve transection (CSNT) with those of two types of partial injury, partial sciatic nerve transection (PSNT) and chronic constriction injury (CCI). As expected, a CSNT profoundly decreased SP expression at 4 and 14 days postinjury, but after PSNT and CCI the levels of preprotachykinin (PPT) mRNA, assessed by in situ hybridization, and the SP immunoreactivity (SP-IR) of the L4 and L5 DRGs did not decrease, nor did dorsal horn SP-IR decrease. Using retrograde labelling with fluorogold to identify spared DRG neurons, we found that the proportion of these neurons expressing SP-IR 14 days after injury was much higher than in neurons of normal DRGs. Further, the highest levels of SP-IR in individual neurons were detected in ipsilateral L4 and L5 DRG neurons after PSNT and CCI. We conclude that partial sciatic nerve injury elevates SP levels in spared DRG neurons. This phenomenon might be involved in the development of neuropathic pain, which commonly follows partial nerve injury.  相似文献   

19.
Cyclooxygenase-2 (COX-2) is now considered to be the major constitutively expressed COX isozyme in the central nervous system. The present immunocytochemical study details localization of COX-2 immunoreactivity in rat spinal cord along with the expression of prostaglandin E2 receptor subtype EP3. Prominent COX-2 staining was observed in the nuclear envelope of neurons throughout the spinal cord, especially in the superficial dorsal horn laminae and motoneurons of lamina IX, as well as in glial cells of the white matter. Expression of EP3 receptor was strictly confined to afferent terminal areas in the superficial dorsal horns.  相似文献   

20.
There is strong evidence that neural circuits underlying certain rhythmic motor behaviors are located in the spinal cord. Such local central pattern generators are thought to coordinate the activity of motoneurons through specific sets of last-order premotor interneurons that establish monosynaptic contacts with motoneurons. After injections of biotinylated dextran amine into the lateral and medial motor columns as well as the ventrolateral white matter at the level of the upper and lower segments of the lumbar spinal cord, we intended to identify and localize retrogradely labelled spinal interneurons that can likely be regarded as last-order premotor interneurons in rats. Regardless of the location of the injection site, labelled interneurons were revealed in laminae V-VIII along a three- or four-segment-long section of the spinal gray matter. Although most of the stained cells were confined to laminae V-VIII in all cases, the distribution of neurons within the confines of this area varied according to the site of injection. After injections into the lateral motor column at the level of the L4-L5 segments, the labelled neurons were located almost exclusively in laminae V-VII ipsilateral to the injection site, and the perikarya were distributed throughout the entire mediolateral extent of this area. Interneurons projecting to the lateral motor column at the level of the L1-L2 segments were also located in laminae V-VII, but most of them were concentrated in the middle one-third or in the lateral half of this area. Following injections into the medial motor column at the level of the L1-L2 segments, the majority of labelled neurons were confined to the medial aspect of laminae V-VII and lamina VIII, and the proportion of neurons that were found contralateral to the injection site was strikingly higher than in the other experimental groups. The results suggest that the organization of last-order premotor interneurons projecting to motoneurons, which are located at different areas of the lateral and medial motor columns and innervate different muscle groups, may present distinct features in the rat spinal cord.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号