首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrochemical performance of membrane electrode assemblies (MEAs) with ultra-low platinum load (0.02 mgPt cm?2) and different compositions of Nafion/C in the catalytic layer have been investigated. The electrodes were fabricated depositing the catalytic ink, prepared with commercial catalyst (HiSPEC 2000), onto the gas diffusion layers by wet powder spraying. The MEAs were electrochemically tested using current-voltage curves and electrochemical impedance spectroscopy measurements. The experiments were carried out at 70 °C in H2/O2 and H2/air as reactant gases at 1 and 2 bar pressure and 100% of relative humidity. For all MEAs tested, power density increases when the gasses pressure is increased from 1 to 2 bar. On the other hand, power density also increased when oxygen is used instead of air as oxidant gas in cathode. The lower power density (34 mW cm?2) and power per Pt loading (0.86 kW gPt?1) corresponds to the MEA prepared without Nafion in anode and cathode catalytic layers working with hydrogen and air at 1 bar pressure as reactants gas. The MEA with 30% wt Nafion/C reached the highest power density (422 mW cm?2) and power per Pt loading (10.60 kW gPt?1) using hydrogen and oxygen at 2 bar pressure. Finally, electrode surface microstructure and cross sections of MEAs were analyzed by Scanning Electron Microscopy (SEM). Examination of the electrodes, revealed that the most uniform ionomer network surface corresponds to the electrode with 40 wt% Nafion/C, and MEA ionomer-free catalytic layer shows delamination, it leads to low electrochemical performance.  相似文献   

2.
Membrane electrode assemblies (MEAs) with ultra-low platinum loadings are attracting significant attention as one method of reducing the quantity of precious metal in polymer electrolyte membrane fuel cells (PEMFCs) and thereby decreasing their cost, one of the key obstacles to the commercialization of PEMFCs. In the present work, high-performance MEAs with ultra-low platinum loadings are developed using a novel catalyst-sprayed membrane technique. The platinum loadings of the anode and cathode are lowered to 0.04 and 0.12 mg cm−2, respectively, but still yield a high performance of 0.7 A cm−2 at 0.7 V. The influence of Nafion content, cell temperature, and back pressures of the reactant gases are investigated. The optimal Nafion content in the catalyst layer is ca. 25 wt.%. This is significantly lower than for low platinum loading MEAs prepared by other methods, indicating ample interfacial contact between the catalyst layer and membrane in our prepared MEAs. Scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS) measurements reveal that our prepared MEA has very thin anode and cathode catalyst layers that come in close contact with the membrane, resulting in a MEA with low resistance and reduced mass transport limitations.  相似文献   

3.
Phosphoric acid used as a proton-conductive medium in high-temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) poisons the Pt surface and prevents oxygen transport in the cathode catalyst layer. The hydrophobic binders in the catalyst not only maintain the catalyst layer structure but also control the phosphoric acid distribution. In this study, polytetrafluoroethylene (PTFE)/carbon black (Vulcan XC-72R) added to the catalyst layer generates an oxygen transport channel. The catalyst layers coated on the gas diffusion layer by the bar-coating method serve as the cathode. High PTFE content causes hydrophobicity in the catalyst layer. The membrane electrode assembly (MEA) with 6 wt% PTFE/Vulcan results in the highest peak power density (0.347 W cm−2) and voltage (0.653 V) at 0.2 A cm−2. A critical reason for its high performance is having the lowest Rct + Rmt values measured at 0.6 V and 0.4 V. These results could contribute to improving the MEA performance for HT-PEMFCs.  相似文献   

4.
To reduce the performance difference of membrane electrode assembles (MEAs) between catalyst coated membrane (CCM) and gas diffusion electrode (GDE) methods, this study presents a novel structure of a glue-functioned Nafion layer coating on the catalyst layer of GDEs to enhance performance. The process of hot pressing is omitted from the membrane electrode assembly (MEA) fabrication in this study. In exploring the effect of the glue-functioned Nafion layer, five MEAs are compared, including one made by the CCM method and four by the GDE method. Loadings of 0, 0.1, 0.3 and 0.5 mg cm−2 of glue-functioned Nafion layer are coated on the surface of the catalyst layer at room temperature with a condensed Nafion solution (20 wt%). The performance of the 0.3 mg cm−2 Nafion layer coating improves 55% compared with that without an extra Nafion layer for the peak power density, and the performance difference reduces from 61.2% to 39.4% when compared with the one using the CCM method. However, the performance of the 0.5 mg cm−2 Nafion layer coating is almost the same as without the Nafion layer. This indicates that increased Nafion cannot guarantee higher performance.  相似文献   

5.
Nafion membranes are widely used for commercial membrane electrode assemblies (MEAs) in proton exchange fuel cells (PEMFCs). The polytetrafluoroethylene (PTFE)/Nafion (PN) composite membrane has the advantages of being low in cost, high in mechanical strength, and does not swell excessively. This study focuses on the properties of PTFE/Nafion membranes and PTFE/Nafion MEAs by comparing the durability and performance of the PN MEAs to commercial Nafion 211 MEAs. In an accelerated degradation test (ADT), the characterization of PTFE/Nafion and Nafion MEAs were analyzed using in-situ electrochemical methods such as polarization curves, AC impedance, cyclic voltammetry (CV), and linear sweep voltammetry (LSV). The results demonstrate an increase in the internal resistance on the PTFE/Nafion MEA only. The three mechanisms behind this unique result were proposed to be: (a) Separation of the catalyst layer from the membrane due to creep deformation; (b) Separation of the outer Nafion layer film from the core PTFE/Nafion membrane due to creep deformation; (c) Degradation of the Nafion plane (or Nafion dissolution) from the PTFE surface.  相似文献   

6.
An ultra-low platinum loading membrane electrode assembly (MEA) with a novel double catalyst layer (DCL) structure was prepared by using two layers of platinum catalysts with different loadings. The inner layer consisted of a high loading platinum catalyst and high Nafion content for keeping good platinum utilization efficiency and the outer layer contained a low loading platinum catalyst with low Nafion content for obtaining a proper thickness thereby enhancing mass transfer in the catalyst layers. Polarization characteristics of MEAs with novel DCL, conventional DCL and single catalyst layer (SCL) were evaluated in a H2–air single cell system. The results show that the performance of the novel DCL MEA is improved substantially, particularly at high current densities. Although the platinum loadings of the anode and cathode are as low as 0.04 and 0.12 mg cm−2 respectively, the current density of the novel DCL MEA still reached 0.73 A cm−2 at a working voltage of 0.65 V, comparable to that of the SCL MEA. In addition, the maximum power density of the novel DCL MEA reached 0.66 W cm−2 at 1.3 A cm−2 and 0.51 V, 11.9% higher than that of the SCL MEA, indicative of improved mass transfer for the novel MEA. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) tests revealed that the novel DCL MEA possesses an efficient electrochemical active layer and good platinum utilization efficiency.  相似文献   

7.
This research was carried out to prepare high performance membrane electrode assemblies (MEAs) for a proton exchange membrane fuel cell (PEMFC). The MEAs were prepared by introducing a microporous sublayer (MPS) between the gas diffusion layer and the catalyst layer. Main parameters for MPS preparation, which are microporous carbon types and the polytetrafluoroethylene (PTFE) content in the MPS, were investigated. Three microporous carbon types, which are Hicon Black, RGN and Vulcan, were evaluated. Then, Nafion membranes with two thicknesses were employed to form an MEA. The preliminary results demonstrated that a high performance could be achieved with the presence of Hicon Black in the MPS and the performance was comparable to those with the presence of Vulcan XC-72, particularly in the high current density region. The optimum PTFE content was found to be 6 wt% and the thinner membrane provided a better cell performance. The highest current density was 858 mA cm?2 at the cell potential of 0.6 V.  相似文献   

8.
The conventional 5-layer membrane electrode assembly (MEA) consists of a proton exchange membrane (PEM) locating at its center, two layers of Pt-C-40 (Pt content 40 wt%) locating next on both surfaces of PEM, and two gas diffusion layers (GDL) locating next on the outer surfaces of Pt-C layers (structure-a MEA). In this paper, we report three modified MEAs consisting of Pt-C-40 (Pt content 40 wt%) and Pt-C-80 (Pt content 80 wt%) catalysts. These are: (1) 7-layer structure-b MEA with a thin Pt-C-80 layer locating between Pt-C-40 layer and PEM; (2) 7-layer structure-c MEA with a thin Pt-C-80 layer locating between Pt-C-40 layer and GDL; and (3) 5-layer structure-d MEA with Pt-C-40 and Pt-C-80 mixing homogeneously and locating between PEM and GDL. Under a fixed Pt loading, we find structure-b, -c, and -d MEAs with 20-40 wt% Pt contributed from Pt-C-80 have better fuel cell performance than structure-a MEA consisting only of Pt-C-40. The reasons for the better fuel cell performance of these modified MEAs are attributed to the better feasibility for O2 gas to reach cathode Pt particles and lower proton transport resistance in catalyst layers of the modified MEAs than structure-a MEA.  相似文献   

9.
An improved fabrication technique for conventional hot-pressed membrane electrode assemblies (MEAs) with carbon supported cobalt triethylenetetramine (CoTETA/C) as the cathode catalyst is investigated. The V-I results of PEM single cell tests show that addition of glycol to the cathode catalyst ink leads to significantly higher electrochemical performance and power density than the single cell prepared by the traditional method. SEM analysis shows that the MEAs prepared by the conventional hot-pressed method have cracks between the cathode catalyst layer and Nafion membrane, and the contact problem between cathode catalyst layer and Nafion membrane is greatly suppressed by addition of glycol to the cathode catalyst ink. Current density-voltage curve and impedance studies illuminate that the MEAs prepared by adding glycol to the cathode catalyst ink have a higher electrochemical surface area, lower cell ohmic resistance, and lower charge transfer resistance. The effects of CoTETA/C loading, Nafion content, and Pt loading are also studied. By optimizing the preparation parameters of the MEA, the as-fabricated cell with a Pt loading of 0.15 mg cm−2 delivers a maximum power density of 181.1 mW cm−2, and a power density of 126.2 mW cm−2 at a voltage of 0.4 V.  相似文献   

10.
The role of Nafion® binder in the electrodes was evaluated by changing its content for the membrane electrode assembly (MEA) fabrication. In the study, we prepared MEAs that have two different compositions of catalyst layers in electrodes. One layer which is close to the electrolyte membrane has the higher Nafion® content. The other which is near the gas diffusion media (GDM) has the lower one. Also, we changed the thickness of two layers to find the ideal composition of the binder and Pt/C in the electrode. The dual catalyst layer coated MEA showed higher cell performance at high current density region than the pristine MEA.  相似文献   

11.
PTFE/Nafion (PN) and PTFE/Nafion/TEOS (PNS) membranes were fabricated for the application of moderate and high temperature proton exchange membrane fuel cells (PEMFCs), respectively. Membrane electrode assemblies (MEAs) were fabricated by PTFE/Nafion (and PTFE/Nafion/TEOS) membranes with commercially available low and high temperature gas diffusion electrodes (GDEs). The effects of relative humidity, operation temperature, and back pressure on the performance and durability test of the as-prepared MEAs were investigated. Incorporating TEOS into a PNS membrane and adding another layer of carbon onto a GDE would result in low membrane conductivity and low fuel cell performance respectively. However, in this work it is shown that HT-PNS MEAs demonstrate a higher performance than LT-PN MEAs in severe conditions - high temperature (118 °C) and low humidity (25% RH). The TEOS and additional carbon layer function as water retaining agents which are especially important for high temperature and low humidity conditions. The HT-PNS MEA showed good stability in a 50 h fuel cell test at high temperature, moderate relative humidity (50% RH) and back pressure of 14.7 psi.  相似文献   

12.
The parameters influencing the water management or the gas diffusion have a large impact on the performances of the PEMFC. In this work, we focused on the influence of the composition of the cathode catalytic layer on the performance of the MEA in relation to the relative humidity. A carbon aerogel was synthesized as catalyst support with a texture minimizing diffusive losses. We studied the influence of the Nafion content by preparing various cathode catalytic layers whose hydric properties were modified by adding PTFE as a hydrophobic agent. We evaluated the impact of the cathodic relative humidity by testing MEAs on a single cell test bench. We showed that modifying the composition of the catalytic layers playing on the content of both Nafion and PTFE, enables to improve the performance due to a better water management. The best performance was obtained with a Nafion/Carbon mass ratio (N/C) of 0.5 and a PTFE/Carbon (PTFE/C) mass ratio of 0.35 allowing 40% more power at 0.4 V and 75%RH. A first positive evaluation of the impact of PTFE is also done with TEC10E40E.  相似文献   

13.
A proton exchange membrane fuel cell (PEMFC) electrode having a modified morphology of conventional Teflon (PTFE) bonded electrodes was studied using the AC impedance method. The electrode differs from other types of electrodes in the presence of a thin catalyst-supporting layer between the gas diffusion backing and the catalyst layer. The thickness and composition of the supporting layer were optimized on the basis of the information from AC impedance measurements. The optimal thickness of the supporting layer and its PTFE content turned out to be approximately 3.5 mg cm−2 and 30 wt.%, respectively. The catalyst layer was cast on top of the supporting layer, from solution that has the proper ratio of ionomer Nafion and Pt/C catalyst. The optimal amount of the ionomer in the catalyst layer was approximately 0.8 mg cm−2 when Pt loading was kept at 0.4 mg cm−2. These values are rationalized in terms of the catalyst active area and the transport of the involved species for the electrode reaction.  相似文献   

14.
The influence of the anode gas diffusion layers (GDLs) on the performances of low-temperature DMFCs, and the properties of mass transport and CO2 removal on these anode GDLs were investigated. The membrane electrode assembly (MEA) based on the hydrophilic anode GDL, which consisted of the untreated carbon paper and hydrophilic anode micro-porous layer (comprised carbon black and 10 wt.% Nafion), showed the highest power density of 13.4 mW cm−2 at 30 °C and ambient pressure. The performances of the MEAs tended to decline with the increase of the PTFE content in the anode GDLs due to the difficulty of methanol transport. The contact angle measurements revealed that the wettabilities of the anode GDLs decreased as the increase of PTFE content. The wettabilities of the GDLs were improved by addition of hydrophilic Nafion ionomer to the GDLs. From the visualizations of CO2 gas bubbles dynamics on the anodes using a transparent cell, it was observed that uniform CO2 gas bubbles with smaller size formed on hydrophilic anode GDLs. And bubbles with larger size were not uniform over the hydrophobic anode GDLs. It was believed that adding PTFE to the anode GDL was not helpful for improving the CO2 gas transport in the anode GDL of the low-temperature DMFC.  相似文献   

15.
In this work, a surface modified Nafion 212 membrane was fabricated by plasma etching in order to enhance the performance of a membrane electrode assembly (MEA) in a polymer electrolyte membrane fuel cell. Single-cell performance of MEA at 0.7 V was increased by about 19% with membrane that was etched for 10 min compared to that with untreated Nafion 212 membrane. The MEA with membrane etched for 20 min exhibited a current density of 1700 mA cm−2 at 0.35 V, which was 8% higher than that of MEA with untreated membrane (1580 mA cm−2). The performances of MEAs containing etched membranes were affected by complex factors such as the thickness and surface morphology of the membrane related to etching time. The structural changes and electrochemical properties of the MEAs with etched membranes were characterized by field emission scanning electron microscopy, Fourier transform-infrared spectrometry, electrochemical impedance spectroscopy, and cyclic voltammetry.  相似文献   

16.
Factors as the Pt/C ratio of the catalyst, the binder content of the electrode and the catalyst deposition method were studied within the scope of ultra-low Pt loading electrodes for high temperature proton exchange membrane fuel cells (HT-PEMFCs). The Pt/C ratio of the catalyst allowed to tune the thickness of the catalytic layer and so to minimize the detrimental effect of the phosphoric acid flooding. A membrane electrode assembly (MEA) with 0.05 mgPtcm−2 at anode and 0.1 mgPtcm−2 at cathode (0.150 mgPtcm−2 in total) attained a peak power density of 346 mW cm−2. It was proven that including a binder in the catalytic layer of ultra-low Pt loading electrodes lowers its performance. Electrospraying-based MEAs with ultra-low Pt loaded electrodes (0.1 mgPtcm−2) rendered the best (peak power density of 400 mW cm−2) compared to conventional methods (spraying or ultrasonic spraying) but with the penalty of a low catalyst deposition rate.  相似文献   

17.
Acid-doped polybenzimidazole (PBI) membrane and polytetrafluoroethylene (PTFE)-based electrodes are used for the membrane electrode assembly (MEA) in high-temperature polymer electrolyte fuel cells (HTPEFCs). To find the optimum PTFE content for the catalyst layer, the PTFE ratio in the electrodes is varied from 25 to 50 wt%. To improve the performance of the electrodes, PBI is added to the catalyst layer. With a weight ratio of PTFE to Pt/C of 45:55 (45 wt% PTFE in the catalyst layer), the fuel cell shows good performance at 150 °C under non-humidified conditions. When 5 wt% PBI is added to the electrodes, performance is further improved (250 mA cm−2 at 0.6 V). Our 20 W class HTPEFC stack is fabricated with a novel MEA. This MEA consists of 8 layers (1 phosphoric acid-doped PBI membrane, 2 electrodes, 1 sub-gasket, 2 gas-diffusion media, 2 gas-sealing gaskets). The sub-gasket mitigates the destruction of a highly acid-doped PBI membrane and provides long-term durability to the fuel cell stack. The stack operates for 1200 h without noticeable cell degradation.  相似文献   

18.
The performance and stability of a direct methanol fuel cell (DMFC) with membrane electrode assemblies (MEA) using different Nafion® contents (30, 50 and 70 wt% or MEA30, MEA50 and MEA70, respectively) and graphitized carbon nanofiber (GNF) supported PtRu catalyst at the anode was investigated by a constant current measurement of 9 days (230 h) in a DMFC and characterization with various techniques before and after this measurement. Of the pristine MEAs, MEA50 reached the highest power and current densities. During the 9-day measurement at a constant current, the performance of MEA30 decreased the most (−124 μV h−1), while the MEA50 was almost stable (−11 μV h−1) and performance of MEA70 improved (+115 μV h−1). After the measurement, the MEA50 remained the best MEA in terms of performance. The optimum anode Nafion content for commercial Vulcan carbon black supported PtRu catalysts is between 20 and 40 wt%, so the GNF-supported catalyst requires more Nafion to reach its peak power. This difference is explained by the tubular geometry of the catalyst support, which requires more Nafion to form a penetrating proton conductive network than the spherical Vulcan. Mass transfer limitations are mitigated by the porous 3D structure of the GNF catalyst layer and possible changes in the compact Nafion filled catalyst layers during constant current production.  相似文献   

19.
The fabrication of electrodes use in proton exchange membrane fuel cells (PEMFCs) by Pt sputter deposition has great potential to increase Pt utilization and reduce Pt loading without loss of cell performance. A radio frequency (RF) magnetron sputter deposition process (RF power = 100 W and argon pressure = 10?3 Torr) was adopted to prepare Pt catalyst layers of PEMFC electrodes. The effects of cathode Pt and Nafion loadings on membrane electrode assembly (MEA)/cell performance were investigated using cell polarization, cyclic voltammetry, AC impedance, and microstructure analysis. Among the tested MEAs with various cathode Pt loadings (0.02–0.4 mg cm?2), the one with 0.1 mg‐Pt cm?2 (grain size = 3.90 nm, mainly Pt(111)) exhibited the best cell performance (320 and 285 mW cm?2 at 0.44 and 0.60 V, respectively), which was similar to or better than those of some commercial nonsputtered/sputtered electrodes with the same or higher Pt loadings. The electrode Pt utilization efficiency increased as the Pt loading decreased. A Pt loading of greater than or lower than 0.1 mg cm?2 yielded a lower electrode electrochemical active surface (EAS) area but a higher charge transfer and diffusion resistance. Nafion impregnation (0.1 to 0.3 mg cm?2) into the sputtered Pt layer (Pt = 0.1 mg cm?2) noticeably increased the EAS area, consistent with the decrease of the capacitance of the electrode double layer, but did not improve MEA/cell performance, mainly because of the increase in the kinetic and mass transfer resistances associated with oxygen reduction on the cathode. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
The effects of the parameters of the anode gas diffusion layer (GDL), including the PTFE content in the backing layer (BL), the PTFE content in the microporous layer (MPL), and the carbon black loading on the performance of a liquid‐feed direct dimethyl ether fuel cell (DDFC), were experimentally investigated. The results indicated that increase in the PTFE content can produce more cracks across the whole surface of the MPL. These cracks were benefit to the anode two‐phase mass transport. The optimal PTFE content in anode BL and MPL was 18 and 40 wt%, respectively. The performances of the DDFCs tended to decline with the increase in the carbon black loading in the anode GDLs due to the difficult long path of mass transport. The maximum power density was obtained with 18 wt% PTFE in BL and 0 mg cm?2 carbon black loading, the optimal result, was 76.6 mW cm?2 at ambient pressure. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号