首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The role of district heating in future renewable energy systems   总被引:1,自引:0,他引:1  
Based on the case of Denmark, this paper analyses the role of district heating in future Renewable Energy Systems. At present, the share of renewable energy is coming close to 20 per cent. From such point of departure, the paper defines a scenario framework in which the Danish system is converted to 100 per cent Renewable Energy Sources (RES) in the year 2060 including reductions in space heating demands by 75 per cent. By use of a detailed energy system analysis of the complete national energy system, the consequences in relation to fuel demand, CO2 emissions and cost are calculated for various heating options, including district heating as well as individual heat pumps and micro CHPs (Combined Heat and Power). The study includes almost 25 per cent of the Danish building stock, namely those buildings which have individual gas or oil boilers today and could be substituted by district heating or a more efficient individual heat source. In such overall perspective, the best solution will be to combine a gradual expansion of district heating with individual heat pumps in the remaining houses. Such conclusion is valid in the present systems, which are mainly based on fossil fuels, as well as in a potential future system based 100 per cent on renewable energy.  相似文献   

2.
In this study, an integrated community‐scale energy model (ICEM) was developed for supporting renewable energy management (REM) systems planning with the consideration of changing climatic conditions. Through quantitatively reflecting interactive relationships among various renewable energy resources under climate change, not only the impacts of climate change on each individual renewable energy but also the combined effects on power‐generation sector from renewable energy resources could be incorporated within a general modeling framework. Also, discrete probability levels associated with various climate change impacts on the REM system could be generated. Moreover, the ICEM could facilitate capacity–expansion planning for energy‐production facilities within a multi‐period and multi‐option context in order to reduce energy‐shortage risks under a number of climate change scenarios. The generated solutions can be used for examining various decision options that are associated with different probability levels when availabilities of renewable energy resources are affected by the changing climatic conditions. A series of probability levels of hydropower‐, wind‐ and solar‐energy availabilities can be integrated into the optimization process. The developed method has been applied to a case of long‐term REM planning for three communities. The generated solutions can provide desired energy resource/service allocation and capacity–expansion plans with a minimized system cost, a maximized system reliability and a maximized energy security. Tradeoffs between system costs, renewable energy availabilities and energy‐shortage risks can also be tackled with the consideration of climate change, which would have both positive and negative impacts on the system cost, energy supply and greenhouse‐gas emission. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Bagasse is selected as the biomass source that is studied because of its annual significant rate production in Iran and potential for energy generation. Bagasse has been as an energy source for the production of energy required to run the sugar factory. The energy needed by factories was supplied by burning bagasse directly inside furnaces, which had an exceptionally low output. To this end, today, a secondary use for this waste product is in combined heat and power plants where its use as a fuel source provides both heat and power. In addition, low efficiency of traditional methods was caused to increase the use of modern methods such as anaerobic digestion, gasification and pyrolysis for the production of bio‐fuels. In this paper, the energy conversion technologies are compared and ranked for the first time in Iran. Therefore, the most fundamental innovation of this research is the choice of the best energy conversion technology for the fuel production with a higher efficiency. To assess the feasibility application and economic benefit of biogas CHP plant, a design for a typical biogas unit is programmed. The results show the acceptable payback period; therefore, economically and technically, biogas CHP plant appears to be an attractive proposition in Iran. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
The Danish city Frederikshavn is aiming at becoming a 100% renewable energy city. The city has a number of energy resources including a potential for off-shore wind power, waste and low-temperature geothermal energy usable as heat source for heat pumps producing district heating.  相似文献   

5.
This paper mainly focuses on the two issues through remote sensing: assessment of the renewable energy potential and integration of the renewable energy model. Three methods for assessing the renewable energy potential with remote sensing (RS) are proposed. The methods can provide more precise evaluation of renewable energy potential, which is the first vital step to develop renewable energy model. The paper then first presents three integrations of the renewable energy model with RS and points out that with respect to the problems one of them is employed. The assessment methods based on RS and the integrations with RS are illustrated by a simple example with Europe solar energy data set. The results show that Germany is the optimal country to install photovoltaic with a capacity of 137 125 GW. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
An imlementation of life-cycle analysis (LCA) for energy systems is presented and applied to two renewable energy systems (wind turbines and building-integrated photovoltaic modules) and compared with coal plants.  相似文献   

7.
This paper presents an optimum sizing methodology to optimize the hybrid energy system (HES) configuration based on genetic algorithm. The proposed optimization model has been applied to evaluate the techno‐economic prospective of the HES to meet the load demand of a remote village in the northern part of Saudi Arabia. The optimum configuration is not achieved only by selecting the combination with the lowest cost but also by finding a suitable renewable energy fraction that satisfies load demand requirements with zero rejected loads. Moreover, the economic, technical and environmental characteristics of nine different HES configurations were investigated and weighed against their performance. The simulation results indicated that the optimum wind turbine (WT) selection is not affected only by the WT speed parameters or by the WT rated power but also by the desired renewable energy fraction. It was found that the rated speed of the WT has a significant effect on optimum WT selection, whereas the WT rated power has no consistent effect on optimal WT selection. Moreover, the results clearly indicated that the HES consisting of photovoltaics (PV), WT, battery bank (Batt) and diesel generator (DG) has superiority over all the nine systems studied here in terms of economical and environmental performance. The PV/Batt/DG hybrid system is only feasible when wind resource is very limited and solar energy density is high. On the other hand, the WT/Batt/DG hybrid system is only feasible at high wind speed and low solar energy density. It was also found that the inclusion of batteries reduced the required DG and hence reduced fuel consumption and operating and maintenance cost. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Integrating variable renewable energy from wind farms into power grids presents challenges for system operation, control, and stability due to the intermittent nature of wind power. One of the most promising solutions is the use of compressed air energy storage (CAES). The main purpose of this paper is to examine the technical and economic potential for use of CAES systems in the grid integration. To carry out this study, 2 CAES plant configurations: adiabatic CAES (A‐CAES) and diabatic CAES (D‐CAES) were modelled and simulated by using the process simulation software ECLIPSE. The nominal compression and power generation of both systems were given at 100 and 140 MWe, respectively. Technical results showed that the overall energy efficiency of the A‐CAES was 65.6%, considerably better than that of the D‐CAES at 54.2%. However, it could be seen in the economic analysis that the breakeven electricity selling price (BESP) of the A‐CAES system was much higher than that of the D‐CAES system at €144/MWh and €91/MWh, respectively. In order to compete with large‐scale fossil fuel power plants, we found that a CO2 taxation scheme (with an assumed CO2‐tax of €20/tonne) improved the economic performance of both CAES systems significantly. This advantage is maximised if the CAES systems use low carbon electricity during its compression cycle, either through access to special tariffs at times of low carbon intensity on the grid, or by direct coupling to a clean energy source, for example a 100‐MW class wind farm.  相似文献   

9.
This paper provides a feasibility analysis of renewable energy supply (RES) for a stand-alone supply large-scale tourist operation (with over 100 beds). The analysis utilises the power load data from a hotel located in a subtropical coastal area of Queensland, Australia. The assessment criteria of the analysis are net present cost, renewable factor and payback time. Due to the limited number of RES case studies in tourist operations and the absence of studies for large resorts, requiring facilities with a higher degree of comfort such as air-conditioning, it is not possible to establish with confidence the viability of RES in this industry. The specific operational characteristics of the tourism accommodation sector, such as 24-h operation, comfort provision and low tolerance for failure necessitates a separate assessment of RES viability for this sector, rather than relying on similar assessments from other commercial sectors. This study uses RES assessment software tools, HOMER (National Renewable Energy Laboratory, US) and HYBRIDS (Solaris Homes, Queensland, Australia), in order to compare diesel generator-only, RES-only and RES/diesel hybrid technologies. HOMER uses hourly load data, whilst HYBRIDS uses average daily energy demand for each month. The modelling results demonstrate that RES, in principle, has the potential to adequately and reliably meet power demand for a stand-alone large-scale tourist accommodation. Optimisation modelling demonstrates that 100% of power demand can be supplied by a RES-only configuration. A hybrid diesel/RES configuration provides the lowest NPC result with a resultant RF of 76%. In comparison to the diesel generator-only configuration, NPC is reduced by 50% and Greenhouse Gas (GHG) emissions by 65%. The payback time of the hybrid RES scenario is 4.3 years. Results indicate that wind energy conversion systems (WECS), rather than photovoltaics, are the most economically viable RES for large-scale operations. Large-scale WECS (over 1000 kW) are more efficient and economical than multiple small-scale WECS (0.1–100 kW). Both modelling tools produced similar results, with HYBRIDS producing on average slightly higher NPC results than HOMER. The modelling and resulting data from the analysis indicate that RES is technically feasible and economically viable as a replacement for conventional thermal energy supply for large-scale tourist operations dependent on stand-alone power supplies.  相似文献   

10.
This study deals with an energy and exergy analysis of Salihli geothermal district heating system (SGDHS) in Manisa, Turkey. In the analysis, actual system data are used to assess the district heating system performance, energy and exergy efficiencies, specific exergy index, exergetic improvement potential and exergy losses. Energy and exergy losses throughout the SGDHS are quantified and illustrated in the flow diagram. The exergy losses in the system, particularly due to the fluid flow, take place in the pumps and the heat exchanger, as well as the exergy losses of the thermal water (e.g. geothermal fluid) and the natural direct discharge of the system. As a result, the total exergy losses account for 2.22, 17.88 and 20.44%, respectively, of the total exergy input to the entire SGDHS. The overall energy and exergy efficiencies of the SGDHS components are also studied to evaluate their individual performances and determined to be 55.5 and 59.4%, respectively. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
In Sweden, over 50% of building heating requirements are covered by district heating. Approximately 8% of the heat supply to district heating systems comes from excess heat from industrial processes. Many studies indicate that there is a potential to substantially increase this share, and policies promoting energy efficiency and greenhouse gas emissions reduction provide incentives to do this. Quantifying the medium and long-term economic and carbon footprint benefits of such investments is difficult because the background energy system against which new investments should be assessed is also expected to undergo significant change as a result of the aforementioned policies. Furthermore, in many cases, the district heating system has already invested or is planning to invest in non-fossil heat sources such as biomass-fueled boilers or CHP units. This paper proposes a holistic methodological framework based on energy market scenarios for assessing the long-term carbon footprint and economic benefits of recovering excess heat from industrial processes for use in district heating systems. In many studies of industrial excess heat, it is assumed that all emissions from the process plant are allocated to the main products, and none to the excess heat. The proposed methodology makes a distinction between unavoidable excess heat and excess heat that could be avoided by increased heat recovery at the plant site, in which case it is assumed that a fraction of the plant emissions should be allocated to the exported heat. The methodology is illustrated through a case study of a chemical complex located approximately 50 km from the city of Gothenburg on the West coast of Sweden, from which substantial amounts of excess heat could be recovered and delivered to heat to the city's district heating network which aims to be completely fossil-free by 2030.  相似文献   

12.
This paper provides an empirical analysis of CO2 emissions and economic growth, renewable energy consumption, and energy consumption over the period 1975–2014 in Germany. This paper uses the autoregressive distributed lag (ARDL) approach of cointegration test and vector error-correction models. The unit root and cointegration tests show that the long-run relationship between CO2 emissions and its determinants. The empirical results show that the findings do not support the environmental Kuznets curve between real GDP and CO2 emissions. To estimate the shocks of renewable energy consumptions, the study applies the dynamic test of Impulse Response Function (IRF) under the VAR method. The increasing portion of renewable energy consumption in electricity generation would have no impacts on the environment. However, the hikes of renewable energy sources would incur more cost to electricity producers and shrivel up the growth of economies through the expansionary effect of industry’s consumption and private capital spending in the Germany’s economy.  相似文献   

13.
Generation expansion planning (GEP) is a power plant mix problem that identifies what, where, when, and how new generating facilities should be installed and when old units be retired over a specific planning horizon. GEP ensures that the quantity of electricity generated matches the electricity demand throughout the planning horizon. This kind of planning is of importance because most production and service delivery is dependent on availability of electricity. Over the years, the traditional GEP approaches have evolved to produce more realistic models and new solution algorithms. For example, with the agitation for green environment, the inclusion of renewable energy plants and energy storage in the traditional GEP model is gradually gaining attention. In this regards, a handful of research has been conducted to identify the optimal expansion plans based on various energy‐related perspectives. The appraisal and classification of studies under these topics are necessary to provide insights for further works in GEP studies. This article therefore presents a comprehensive up‐to‐date review of GEP studies. Result from the survey shows that the integration of demand side management, energy storage systems (ESSs), and short‐term operational characteristics of power plants in GEP models can significantly improve flexibility of power system networks and cause a change in energy production and the optimal capacity mix. Furthermore, this article was able to identify that to effectively integrate ESS into the generation expansion plan, a high temporal resolution dimension is essential. It also provides a policy discussion with regard to the implementation of GEP. This survey provides a broad background to explore new research areas in order to improve the presently available GEP models.  相似文献   

14.
ABSTRACT

Optimal energy renovations of apartment buildings in Finland have a great impact on annual energy demand. However, reduction of energy demand does not necessarily translate into similar changes in peak power demand. Four different types of apartment buildings, representing the Finnish apartment building stock, were examined after optimal energy retrofits to see the influence of retrofitting on hourly power demand. Switching from district heating to ground-source heat pumps reduced emissions significantly under current energy mix. However, the use of ground-source heat pumps increased hourly peak electricity demand by 46–153%, compared to district heated apartment buildings. The corresponding increase in electrical energy demand was 30–108% in the peak month of January. This could increase the use of high emission peak power plants and negate some of the emission benefits. Solar thermal collectors and heat recovery systems could reduce purchased heating energy to zero in summer. Solar electricity could reduce median power demand in summer, but had only a little effect on peak power demand. The reduction in peak power demand after energy retrofits was less than the reduction in energy demand.  相似文献   

15.
A dynamic model of a direct district heating system (DDHS) is developed, and an energy optimal control strategy is designed. The DDHS is characterized as a system with long transport time delay. The use of a Smith predictor (SP) to deal with this type of time delay is explored. An SP is designed by using the reduced‐order dynamic model and implemented on the full‐order model. Also, optimal set point profiles of supply water temperature as a function of outdoor air temperature have been determined. The simulation results show that the SP works effectively in disturbance rejection compared with the nominal control design. The use of optimal set point control strategy resulted in energy savings of the order of 19–32% when the influence of internal load was considered. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
Greenhouses in northern climates require a large amount of supplemental heating for growing crops in winter seasons, so energy‐efficient design of greenhouses based on local climate is important to minimize the heating demand. In this study, greenhouse design parameters including shape, orientation, the angle of the roof, and width of the span have been studied for the conceptual design of conventional greenhouses for Canadian Prairies using a heating simulation model. Five different shapes of greenhouses including even‐span, uneven‐span, modified arch, vinery, and quonset shape have been selected for the study. The simulation results proved that the uneven‐span gable roof shape receives the highest solar radiation, whereas the quonset shape receives the lowest solar radiation. However, the quonset shape greenhouse requires about 7.6% less annual heating as compared to the gable roof greenhouse, but the quonset would not be adopted as multispan greenhouses. Therefore, the gable roof greenhouse is considered as energy efficient for the multispan gutter connected greenhouses whereas quonset shape as a free‐standing single‐span greenhouses. In high northern latitudes, the greenhouse with east‐west orientation is more energy efficient from heating and cooling point of view when the length‐width ratio of the greenhouse is more than 1. The heating energy saving potential of the large span width in single‐span greenhouses is relatively higher as compared to the multispan greenhouses.  相似文献   

17.
Nanometallic iron and aluminium, along with hydrogen and electricity, are among the proposed alternatives to the petroleum‐based fuels for future transportation. The advantages of the metallic fuels appear to be high volumetric energy densities and zero greenhouse gas emissions during the operation of the vehicle. However, nanometallic fuels do not exist in nature, and a well‐to‐wheel analysis of the fuel manufacture‐utilization system is required to quantify the energy consumption and assess the true environmental impact of the proposed alternative. The three‐component nanometallic fuel system consisting of a metal production process, a nanoparticle formulation process and the metal combustion process is analysed in this paper. The energy balance and the environmental impact are estimated for nanometallic iron and aluminium based systems. The sustainability of once‐through systems that do not involve recycle of combustion products is questionable because of resource limitations. A viable system for satisfying the transportation fuel demands will involve the reduction and recycle of the combustion products. A comparison of these nanometallic fuels with gasoline and hydrogen indicates that nanometallic fuels are the least efficient, with primary energy consumption greater than 11 MJ km?1 compared to 0.625 MJ km?1 for gasoline and 8.6 MJ km?1 for hydrogen. The nanometallic fuels will also have the most severe impact of the three, with CO2‐equivalent emissions of 13.44 billion tons year?1 for iron and 21.1 billion tons year?1 for aluminium as compared to approximately 0.8 billion tons year?1 for gasoline. These emissions from nanometallic fuels are at least an order‐of‐magnitude higher than those for gasoline and hydrogen. The results of the analysis emphasize the need for well‐to‐wheel assessment for determining the true impact of technologies proposed as replacements for the current technologies. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
A hybrid power system may be used to reduce dependency on either conventional energy or renewable systems. This article deals with the sizing, generator running hours, sensitivity analysis, optimisation, and greenhouse gas emission analysis of hybrid renewable energy systems (HRES). Two locations have been selected where the feasibility of using different hybrid systems is studied for the same load demand. One site is the small remote community of Amini in the Lakshadweep Islands, located in southern India in the Arabian Sea, where solar and/or wind energy is always available throughout the year to provide energy security. Another place is the rural township of Hathras, in the northern Indian state of Uttar Pradesh, where agricultural biomass is found in abundance for the whole year. A comparative study has been made for the two locations for the same load demand by simulating HRES. To achieve the goal of simulation, the hybrid optimisation model for electric renewables (HOMER) software of the National Renewable Energy Laboratory, USA, is used. An optimisation model of a hybrid renewable system has been prepared which simplifies the task of evaluating the design of an off-grid/standalone system. After simulating all possible system equipment with their sizes, a list of many possible configurations may be evaluated and sorted by net present cost to compare the design options. An elaborate sensitivity analysis has been used for each input variable; the whole optimisation process is repeated to get simulated system configurations  相似文献   

19.
Regions with densely concentration of industries and district heating systems (DHS) could be interesting study object from the light of an integrated heat market on local basis. System analysis with a widened system boundary could be used as an approach to evaluate the benefit of an integrated heat supply system. In this study, an energy system model consisting of totally seven different participants is designed and the optimization results of the system analysis are presented. With applied data and assumptions, the study shows that a significant amount of the heat demand within two sub‐systems can be covered by heat supply from the heat market (the entire heat comes from two industries). Shadow prices, which can be used for heat pricing, indicate the advantage of an integrated system. The system cost reduction through integration and the availability of several actors with diverse energy supply system, makes the region under study an interesting area to prove a locally deregulated heat market. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
This paper presents an experimental determination of energy requirement for greenhouse heating. The overall heat loss coefficient, heat input, the control factor for air‐tightness, the rate of heat loss and the thermal screen effectiveness were calculated. The relationships between the overall heat loss coefficient and the wind speed, and the outside temperature were modelled, including the measured and calculated values. It was found that the thermal screen effectiveness was 16 and 19.8% for the polyethylene (PE) and polyester screens, respectively. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号