首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 655 毫秒
1.
苏明跃  杨丽飞  郭芬 《冶金分析》2010,30(12):39-43
使用硝酸、盐酸、氢氟酸体系在高压密封微波消解器中完全消解锰矿样品,采用顺序注射-氢化物发生原子荧光光谱法检测样品中砷、汞含量。讨论了微波消解酸体系及用量的选择,研究了硼氢化钾浓度、载气流量、屏蔽气流量、溶液酸介质、载流溶液、溶液酸碱比例、样品中的主要基体元素等因素对砷、汞检测的影响,并确立了适宜的检测条件。砷浓度在0~100μg/L范围内与荧光强度呈良好的线性关系,砷的检出限为0.02μg/L;汞浓度在0~10μg/L范围内与荧光强度呈良好的线性关系,汞的检出限为0.05μg/L。采用本方法检测锰矿中砷、汞,砷的回收率可达105%~112%,相对标准偏差小于2.5%;测汞回收率可达91%~110%,相对标准偏差小于4.4%。使用该法分析参考物质和实际样品,分析结果与认定值和其他方法测定值一致。  相似文献   

2.
二氧化钛中砷的检测方法中,样品前处理多数采用硝酸-盐酸-氢氟酸混酸体系溶解,而采用此法处理样品,会存在钛容易水解且消解时间较长的问题。实验提出了硫酸-硫酸铵体系溶解二氧化钛样品的方法,不仅解决了上述问题且反应温和,并据此建立了氢化物发生-原子荧光光谱法(HG-AFS)测定二氧化钛样品中砷的方法。实验表明,砷的质量浓度在0.50~20 μg/L范围内与其对应的吸光度呈线性关系,线性相关系数为0.999 8,方法检出限为0.05 μg/L。干扰试验表明,基体钛样品中的共存元素均不干扰测定。方法用于二氧化钛实际样品分析,测定结果与电感耦合等离子体质谱法(ICP-MS)相符,相对标准偏差(RSD,n=11)小于5%,加标回收率为95%~101%。  相似文献   

3.
采用酸溶消解处理冰铜样品, 以氢化物发生-原子荧光光谱法(HG-AFS)对其中的砷进行测定。探讨了试样消解方法、影响光谱测量的各种因素以及共存元素的干扰。结果表明, 盐酸-硝酸-硫酸混酸溶样, 硫脲-抗坏血酸溶液作掩蔽剂及预还原剂, 共存元素没有明显干扰。砷的浓度在0~100 μg/L范围内线性良好, 方法的检出限为0.05 μg/L。方法用于实际样品分析, 测得结果与电感耦合等离子体原子发射光谱法一致, 相对标准偏差(n=11, RSD)小于7%, 加标回收率为90%~95%。  相似文献   

4.
文章介绍了用原子荧光光谱法测定活性炭废物中砷的方法,对仪器的工作条件进行了优化选择,并对王水微波消解前处理测定方法和硝酸-高氯酸-氢氟酸电热板前处理测定方法进行了对比试验。结果表明:硝酸-高氯酸-氢氟酸电热板前处理-原子荧光光度法测定砷,前处理样品能够消解彻底,测定结果稳定,重现性好,适用于实际样品的分析测定。  相似文献   

5.
通常锡矿石中砷、锑含量的检测方法都是以分光光度法为主,实验以盐酸-硝酸混合酸微波消解样品,建立了氢化物发生-原子荧光光谱法测定锡矿石中砷和锑的新方法。实验表明:以8 mL盐酸-硝酸(5+3)混酸为溶剂,采用微波消解样品,在盐酸浓度约为0.96 mol/L,硫脲和抗坏血酸的质量浓度均为10 g/L时,以HCl(1+9)作为载流液,20 g/L硼氢化钾溶液为上机还原剂进行测定,以砷和锑的荧光强度与其对应的质量浓度绘制校准曲线,线性相关系数均不小于0.999 8。砷和锑的方法检出限分别为0.044 2 μg/L和0.020 4 μg/L。干扰试验表明,锡矿石样品中的共存元素不干扰测定。采用实验方法对锡矿石实际样品中砷和锑进行测定,测得结果的相对标准偏差(RSD,n=6)分别为1.1%~1.3%和0.99%~1.4%,加标回收率分别为99%~104%和98%~104%。将实验方法应用于锡矿石标准物质的测定,测定值与认定值基本一致。  相似文献   

6.
建立了测定进口铜锍样品中砷、汞含量的氢化物发生原子荧光光谱法。在铜锍试样中加入王水和氢氟酸,经微波消解后稀释,消解液中加入硫脲-抗坏血酸预还原,加硼氢化钾使砷和汞生成硼氢化物,用原子荧光光谱法测定砷和汞含量。铜、铁、硫等对待测元素基体效应不显著。在选定条件下,砷和汞的检出限分别为0.003 9 μg/L和0.060 8 μg/L,样品的加标回收率在95 %~123 %之间,砷和汞的相对标准偏差分别为0.56%和2.0%(n=6),方法可用于大批铜锍样品中砷和汞的测定。  相似文献   

7.
汞和砷是土壤环境质量监测中的管控元素,由于两者含量差异较大,使用氢化物发生-原子荧光光谱法难以同时准确测定,而使用电感耦合等离子体原子发射光谱法(ICP-AES)测定砷、汞时有灵敏度偏低的问题。试验探讨了自制简易氢化物发生装置与电感耦合等离子体原子发射光谱仪联用同时测定土壤中汞和砷。使用王水(1+1)消解样品,保持样品溶液的酸度为15%,还原剂为15 g/L硼氢化钾溶液;设置ICP-AES最佳工作条件为入射功率1 450 W、蠕动泵转速1.7 mL/min、等离子体气流量16 L/min、雾化气流量0.45 L/min。方法中汞和砷的线性范围分别为0.50~10.0μg/L和5.00~100μg/L,线性相关系数均为0.999 8,检出限分别为0.016μg/g和0.12μg/g,定量限分别为0.064μg/g和0.48μg/g。按照实验方法测定土壤标准物质和实际土壤样品中汞和砷,土壤标准物质的测定值与认定值相一致;实际样品测定结果的相对标准偏差(RSD,n=6)为3.1%~4.8%。同时采用实验方法和原子荧光光谱法对实际土壤样品中汞和砷进行测定,并通过t检验法检验显示两种方法测定结果...  相似文献   

8.
郭晶  冯媛  张倩  程思敏  刘艳 《冶金分析》2023,(11):57-61
砷是一种剧毒物质,建立测定铜冶炼工业废水中砷的方法具有重要意义。铜冶炼工业废水中铜、铁、锌等盐分含量较高、基体复杂,采用HJ 694—2014中原子荧光光谱法测定时,会污染仪器管道、堵塞雾化器,同时存在记忆效应。本文以盐酸、硝酸将样品于80℃水浴中消解,用氢氧化镧共沉淀法对砷进行分离富集,以盐酸溶解沉淀,建立了沉淀分离-氢化物发生原子荧光光谱法(HG-AFS)测定铜冶炼废水中砷的方法,解决了仪器管道污染、雾化器堵塞和记忆效应等问题。实验表明,砷质量浓度在2.0~10.0μg/L范围内与其对应的荧光强度呈线性关系,相关系数为0.999 8,方法检出限为0.027μg/L。干扰试验表明,样品中的共存元素对测定无干扰。将实验方法应用于3个铜冶炼废水样品中砷含量的测定,并分别进行5次加标回收试验,测定结果的相对标准偏差(RSD,n=5)为2.0%~3.6%,回收率在97%~108%之间。按实验方法对铜冶炼废水样品中砷进行沉淀分离后测定,测得结果与标准HJ 694—2014基本一致。  相似文献   

9.
银侧吹炉烟灰样品结构较为复杂,硝酸-酒石酸溶解样品-EDTA滴定测定其中的铋时,样品消解不完全,终点不稳定,测定结果偏低。为了准确测定银侧吹炉烟灰中的铋,试验建立了硝酸-盐酸-氢氟酸-高氯酸消解银侧吹炉烟灰,选择Bi190.234 nm为分析线,使用电感耦合等离子体发射光谱法(ICP-AES)测定银侧吹炉烟灰的铋的方法。试验讨论了溶样方法的选择,介质及加入量的选择,共存元素干扰情况对铋测定结果的影响。结果表明:采用硝酸-盐酸-氢氟酸-高氯酸消解样品能使样品消解完全,加入25mL王水后进行测定结果稳定,共存元素对铋测定结果无影响。铋在0~15μg/mL的校正曲线关系良好,相关系数为0.999 998,方法检出限为0.017μg/mL。取不同银侧吹炉烟灰样品进行精密度考察,铋测定结果的相对标准偏差(RSD,n=12)在0.19%~0.58%之间,加标回收率在99.49%~100.25%之间。  相似文献   

10.
建立用水浴加王水消解-氢化物发生双道原子荧光光谱法同时测定钛白粉中汞和可溶砷的方法。实验表明,本方法砷检出限为0.000 5 mg/kg和汞的检出限为0.000 1 mg/kg,实际样品中汞和可溶砷测得结果的相对标准偏差(RSD%,n=11)分别为5.4%和8.1%。方法用于钛白粉实际样品测定,测得结果与电感耦合等离子体质谱法(ICP-MS)测定结果相符,汞和砷加标回收率为89.9%和93.4%。  相似文献   

11.
应用氢化物发生—原子荧光光谱法测定金属锰中的砷、锑含量。采用(5+1)的盐酸+硝酸混酸溶解金属锰样品,以硫脲和抗环血酸混合液作为预还原剂,以硼氢化钾作为还原剂,以氩气作载气将砷化氢、锑化氢导入石英炉原子化器中进行原子化,在特征光源激发下,产生原子荧光。在一定条件下,荧光强度与被测元素的浓度成正比,由此测定砷、锑的含量。砷、锑的线性范围为0.0~20.0μg/L,相关系数r=0.999,加标回收率为104.0%~108.5%,相对标准偏差为0.44%~2.12%。  相似文献   

12.
采用电感耦合等离子体原子发射光谱法对硅系铁合金中As,Pb元素进行了分析。以氢氟酸和硝酸分解样品,高氯酸冒烟分离硅,用盐酸溶解残留物后定容测定。测定时选择193.696 nm和220.353 nm分别作为砷和铅的分析线,基体铁不产生谱线重叠干扰。砷和铅的质量浓度在0~1.0μg/mL范围内有良好线性关系,相关系数分别为0.999 4和0.999 5。对11份空白进行测定,得到砷和铅的检出限分别为0.004μg/mL和0.003μg/mL。用本方法测硅系铁合金中砷、铅的回收率在93.5%~105.0%之间;  相似文献   

13.
以盐酸硝酸(5+3)的混酸为消解液,微波消解钨矿样品,然后采用氢化物发生原子荧光光谱法(HG-AFS)同时测定钨矿中砷和汞。对微波消解程序进行优化,并探讨了共存离子对测定砷、汞的干扰。由于钨基体在酸性消解液中形成钨酸沉淀,而实际样品中其他共存离子浓度均低于允许浓度,因此,基体和共存元素对待测元素几乎没有影响。砷、汞的测定下限分别为0.20 mg/kg和0.10 mg/kg。选择不同钨矿石进行精密度考察,相对标准偏差(RSD,n=6)在1.3%~6.2%范围内;加标回收试验表明,回收率在82%~101%之间。对钨矿石标准样品进行分析,砷的测定值与认定值一致。  相似文献   

14.
《黄金》2015,(8)
研究建立了采用原子荧光光谱仪测定金精矿中砷、汞、镉、铅、铋的方法。通过对比实验选择了水浴溶样法作为砷、汞、铋的预处理方法,选择了盐酸、硝酸、高氯酸和氢氟酸混酸溶样法作为砷、铋、镉、铅的预处理方法。经过条件实验分别确定了两种预处理方法的最小称样量、试剂用量、水浴溶样法溶样时间、混酸溶样法定容介质酸度等最佳实验条件。该方法加入标准物质回收率为92.54%~125.10%,精密度(RSD,n=11)均小于10%,准确度小于8%。  相似文献   

15.
利用高压密闭微波消解技术消解样品, 建立了氧化物发生原子荧光光谱法测定污水处理厂污泥中汞和砷的方法。对消解酸和消解程序进行了优化, 同时讨论了硼氢化钾浓度对测定的影响。结果表明, 选用10 mL 硝酸-盐酸(4+6)可将0.25 g污泥样品消解完全;确定消解程序如下:消解功率为850 W, 发射率为80%, 第1步采用5 min内从室温升温至110 ℃, 保持5 min, 第2步采用10 min内继续升温至180 ℃, 保持20 min;在硼氢化钾浓度为20 g/L时进行测定, 效果最佳。汞和砷的方法检出限分别为0.001 6 mg/kg和0.002 2 mg/kg。方法应用于污泥样品中汞和砷的测定, 相对标准偏差(RSD, n=6)分别为2.7 %~3.8%和1.1%~2.0%, 汞和砷的加标回收率分别为96%~102%和98%~104%。方法应用于土壤标准样品GSS-25和GSS-26中汞和砷的测定, 结果与认定值一致, 汞和砷的RSD(n=6)分别为4.5%~7.4%和2.2%~2.4%。  相似文献   

16.
施昱  王劲榕  周娅 《云南冶金》2021,(3):110-113
采用氢化物发生-原子荧光光谱法分析工业硅中的砷,对溶样方法、实验条件进行了实验讨论.实验采用聚四氟乙烯烧杯,用硝酸、氢氟酸、高氯酸、盐酸溶解样品,在选定的条件下,砷的检出限为0.30μg/L,回收率在96.0%~102.0%之间,相对标准偏差为1.26%.此法可以测定工业硅中0.00001%~0.001%范围内的微量及...  相似文献   

17.
建立以氢氟酸—盐酸—硝酸为消解体系,运用原子荧光光度计测定固体废弃物中总锡质量分数的分析方法。比较不同酸介质、还原剂及掩蔽剂的试验效果,得出最佳的工作条件下,该方法锡元素校准曲线的相关系数稳定在0.999 8,检出限为0.06 mg/kg。对GSS-4a平行测定8次计算得RSD=3.58%;选取从低到高4种不同锡质量分数的标准样品测得结果的相对误差为-3.85%~4.11%;在8、4和2μg/L 3种加标量下,方法的加标回收率在93.7%~107.0%之间。该方法检出限低、稳定性高、操作性强,可满足实验室检测固体废弃物中总锡的质量分数,提高检测效率,适用于日常大批量分析样品的要求。  相似文献   

18.
通过王水-水浴溶解样品对同一底液采用不同的处理手段后,实现电感耦合等离子体发射光谱仪测定铁、硫,电感耦合等离子体质谱仪测定铋和铅,原子荧光光谱仪测定锑、砷、汞等元素.方法的准确度在0.001~0.035之间,精密度在0.076%~8.90%之间.该方法通过共享使用同一底液,3种仪器设备分别测试,达到组合、高效测定多种元...  相似文献   

19.
利用盐酸、硝酸和液溴分解铜精矿样品,采用顺序注射-氢化物发生原子荧光光谱法检测样品中砷含量。讨论了样品中的主元素铜和其他元素对砷的干扰及消除方法;确定了适宜的硼氢化钾浓度。提出利用仪器的顺序注射装置的稀释功能测定含砷量较高的样品,扩展了测量的范围,提高了工作效率。砷质量浓度在0.90~100μg/L范围内与荧光强度呈良好的线性关系,方法检出限为0.30μg/L。该方法用于测定铜精矿中的砷,回收率可达89.1%~109.1%,相对标准偏差小于6.0%;铜精矿的测定结果与国家标准方法比较,结果吻合。  相似文献   

20.
采用5种不同前处理方法进行金属矿中砷量的测定,并对比了方法的相对适用性.结果表明:硝酸-硫酸法、逆王水法和王水法消解样品,电感耦合等离子体原子发射光谱法测定砷量准确快速,精密度分别为0.85% ~4.29%、1.17% ~3.74%、1.14% ~4.34%;盐酸-硝酸-高氯酸法不适合砷量的分析测定;碱熔分离-碘量法不...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号