首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
地下连续墙变形受基坑形状、空间尺寸、支撑布置的影响,在三角形直角长边方向上,地下连续墙变形方向朝基坑内变形,最大位移为45mm;在三角形斜边方向上,地下连续墙变形方向朝迎土侧变形,最大位移约-40mm;在三角形直角短边侧的地下连续墙,其位移分布较为均匀,变形值大小约为5mm;基坑周围地表沉降的变形规律较为一致,均在边线中点位置最大,逐步向边线两边逐步减小,离基坑边线越远地表沉降越小;4道支撑的内力整体上均随着开挖深度的增加而增加,在基坑开挖至底部时,4道支撑的内力发挥程度均大于80%。  相似文献   

2.
以上海软土地区某挖深45m级超深基坑工程为背景,分析了其实测变形特性。结果表明:地下连续墙的侧向位移随开挖深度的增大而逐渐变大,且变形空间效应显著;由于开挖深度大,地下连续墙的绝对侧向变形量也较大,但最大侧向位移平均值与开挖深度的比值仅为0.43%,与上海软土地区挖深小于30m的基坑变形统计平均值接近;地下连续墙及立柱受开挖卸荷影响,竖向位移表现为隆起,且在底板浇筑工况下隆起值趋于稳定,立柱的最大回弹达65mm;各道支撑轴力增量基本发生在紧邻下方土体开挖工况,且最大轴力值基本发生在第六、七、八道支撑中;基坑外地表沉降均呈“凹槽形”,随施工阶段的推移地表沉降逐步增加,且发生最大沉降的位置随之逐步向坑外发展,而无量纲化地表沉降仍处于上海软土地区统计的沉降包络线范围之内;此外,基坑周边管线、磁悬浮的变形均较小,表明基坑工程的安全可控。  相似文献   

3.
针对天津地区大量进行的临近地铁深基坑工程问题,以环绕并紧贴思源道地铁车站的某深大异形基坑为工程背景,分析了地下连续墙和环形支撑支护体系作用下基坑的变形特性。结果表明:该基坑的地下连续墙后的地表沉降值随着开挖深度的增大而增大,最终沉降值控制在20mm范围内;地表沉降变形模式表现为凹槽形,地表沉降影响范围也随着开挖深度的增加而增大;基坑墙壁土体的水平位移在垂直方向上呈现凸字形特征,具体表现为中部大、上部和底部较小。最大水平位移的位置随着开挖深度的增加而逐步向下移动。基坑本体及临近建(构)筑物的变形在地下连续墙和环撑支撑结构作用下均得到了有效控制。  相似文献   

4.
黄磊 《建筑施工》2021,43(8):1640-1642
基于上海软土地区某深基坑工程地下连续墙施工完成后的封闭性试验,分析围护结构及首道撑施工完成、基坑开挖前的承压水降水试验引起的围护结构变形实测数据,通过理论计算分析由此引起的坑外地面沉降.得到的主要结论有:复杂敏感环境基坑工程开挖前封闭性试验的环境影响不容忽视,封闭性试验引起的围护结构最大侧向位移达开挖深度的0.12%.邻地铁侧设置小坑可以有效减小承压水降压引起的基坑外围地下连续墙变形及坑外地表沉降.小基坑外侧地下连续墙最大水平位移约为大基坑地下连续墙最大水平位移的30%.小基坑地下连续墙外侧地表最大沉降约为大基坑地下连续墙外最大地表沉降的35%.  相似文献   

5.
翟文琦  吕明喜 《砖瓦》2024,(2):132-134
为解决复杂环境下大面积淤泥质软土深基坑工程的支护变形问题,以山东省东营市某高层住宅小区深基坑工程为研究对象,运用现场实测的手段,研究基坑不同开挖过程中地表的沉降变形、围护结构侧向变形和混凝土支撑的轴力变化过程。结果表明,不同开挖阶段,地表沉降均随着距离的增加呈现“勺”状,地表沉降峰值随着基坑工程开挖深度的增加而逐步向远离基坑的方向偏移,施工至基坑底部时地表最大沉降为9.8mm;不同开挖深度时,围护桩水平向变形均呈现“弓”字形,其水平向位移峰值出现在基坑开挖面附近,并随着基坑开挖深度的增加而增加,施工至基坑底部时地表最大沉降为10.2mm;在基坑开挖较浅时,基坑围护结构的轴力主要由第一道钢筋混凝土支撑承受,随后施作了第二道钢筋混凝土支撑,第二道支撑的轴力逐步增大并趋于稳定,而第一道支撑的轴力则逐步减小。  相似文献   

6.
刘刚  张丹 《建筑安全》2021,36(11):28-33
为研究深厚软土地区综合管廊深基坑开挖变形特性,文章以妈湾跨海通道大铲湾段综合管廊基坑工程为背景,基于MIDAS GTS NX对使用地下连续墙以及内支撑支护的深基坑开挖全过程进行模拟,计算分析了不同开挖阶段下周围地层和支护结构的变形特性.计算结果表明:(1)在各个施工段中,各项变形数值均处于合理范围之内,地层变形的最大沉降变形为17.49 mm,远小于设计值30 mm,而坑底隆起值为36.77 mm不超过60 mm,也完全满足一级设计值要求.地下连续墙的水平变形Y方向为13.44 mm,完全满足深层水平位移监测值.(2)地下连续墙、内支撑结构有效地控制了深厚软土地区基坑的变形,同时也指明了后续施工过程中需要进行监测的关键点.(3)文中地下连续墙以及内支撑的结构设计方案能全过程较好地满足深厚软岩地层中深大管廊的基坑稳定性要求,为今后相似软土环境中管廊基坑的开挖支护方式提供了参考.  相似文献   

7.
以某明挖隧道深基坑的组合支撑轴力、地表沉降、墙体水平位移、水土压力等施工监测数据为依据,探讨了组合支撑轴力、地表沉降、墙体水平位移等的变化规律。结果表明:围护结构外沉降量与离基坑的距离有一定的关系;深基坑开挖时应考虑时空效应及土的流变特性,在基坑开挖前应做好支撑工作,以围护基坑的稳定性;围护结构变形呈抛物线型,基坑顶部和底部变形较小,基坑的中部变形较大的原因可能是深基坑的第一道支撑接近地表,监测数据是在第一道支撑完成后才开始测量,且地下连续墙入土较深或地下连续墙下层土体较结实,底部墙体位移受到制约。  相似文献   

8.
为了研究土性参数变化对软土深基坑稳定性的影响,本文采用有限差分软件对不同土性参数情况下软土地区深基坑位移及支护结构受力情况进行了分析。结果表明,土体弹性模型对深基坑开挖后地表最大沉降值、地下连续墙最大水平位移值、支撑最大轴力值均产生较大影响。土体弹性模量较低,工程性质较差不利于深基坑的稳定,采取适当变形控制措施,提高基坑施工要求,从而确保深基坑的稳定性。  相似文献   

9.
以南宁地铁3号线长堽路站基坑为工程背景,整理、分析现场施工过程监测数据,总结围护结构水平位移、周边地表变形、支撑轴力实测数据规律,探讨基坑在不同开挖深度下围护结构及坑边地表变形规律及特征。采用有限元Midas软件,建立基坑开挖模拟模型,对其分步开挖进行了数值模拟,并将计算结果与实测数据进行对比分析,进一步总结分析狭长型基坑在不同开挖深度下整体变形特征。研究表明,长堽路站基坑随着开挖深度增加,围护桩水平位移增大,最大值位置逐渐向下部移动,最大部位位于第二层开挖线与第三层开挖线之间;整体上基坑长边及短边围护结构水平位移由基坑中部向两端逐渐减小;随着基坑开挖深度不断增加,坑边地表沉降量不断增大,基坑周附近8 m范围内沉降变形最大,随着与基坑距离逐渐增大沉降量逐渐减小。基坑周边沉降影响范围约为15 m,基坑长边及短边地表沉降量均由中部向两端减小。  相似文献   

10.
以某特大圆环支撑深基坑工程为背景,采用有限元分析软件MIDAS/GTS,对深基坑特大圆环支撑体系的变形特性进行了系统的三维数值分析。通过与地下连续墙的水平侧向变形和墙顶沉降实测数据进行对比分析,表明采用GTS软件进行特大圆环支撑深基坑工程的三维动态施工模拟分析是可行的;研究了不同土体开挖次序下、不同工程地质条件下特大圆环支撑深基坑地下连续墙的水平侧向变形特性,结果表明:土体开挖过程,地下连续墙的水平侧向位移存在显著的位移回弹效应,且随着基坑开挖深度的增大而增强,非对称开挖明显强于对称开挖,采用对称开挖比非对称开挖能显著减小软土地层地下连续墙的水平侧向位移。  相似文献   

11.
详尽分析了杭州某上部带有较厚硬壳层的深厚软黏土地基中,开挖深度为17.4~19.8 m,采用地下连续墙和多层钢筋混凝土支撑作为支护结构的超深基坑工程的实测性状。现场监测内容包括基坑侧壁土体水平位移、坑外地表沉降及内支撑轴力。研究表明,本案例基坑的最大水平位移与基坑最大开挖深度之比 hm mδ/H 介于0.24%~0.75%,最大水平位移超过100 mm,其中蠕变变形占总侧向变形的比例高达44%~56%,基坑水平位移蠕变速率为0.15~0.76 mm/d,蠕变速率与基坑开挖深度和基底附近土层性质有密切关系;“T”型地下连续墙和隔断墙技术对减小侧壁土体变形有一定作用。基坑坑外横向地面沉降大致呈抛物线分布,坑外纵向沉降大致呈马鞍形,地表周围土体最大沉降与基坑最大开挖深度之比 vm mδ/H 介于0.26%~0.7%,最大沉降量与坑壁最大侧向位移量的关系大致为 vmax hmaxδ=δ~ hmax2.57δ,沉降蠕变速率为0.1~0.6 mm/d。随着开挖及相邻支撑的浇筑及拆除,多层支撑支护结构中各层支撑的轴力不断变化。  相似文献   

12.
深基坑工程设计需以开挖施工时的诸多技术参数为依据,但开挖施工过程中往往会引起支护结构内力和位移以及基坑内外土体变形发生种种意外变化,传统的设计方法难以事先设定或事后处理,针对海相软土地层大跨深基坑开挖的变形特性与有效的控制措施,特此进行深基坑施工模型试验研究,研究了海相软土工程力学特性、围护结构空间效应等多方面因素对深基坑施工失稳破坏的影响。分析结果表明:(1)在基坑开挖过程中,地下连续墙变形趋势呈弓形变化,且在开挖深度3/4处变形速率最大;(2)最大地表沉降随着开挖深度的增大而具有增大的趋势,基本为0.1%H~0.8%H,其平均值为0.38%H。  相似文献   

13.
针对合肥地下轨道交通某地铁站深基坑,采用三维有限元方法模拟基坑开挖过程中土体与支护结构的相互作用情况,研究由此产生的周边土体水平位移变化及沉降变形对附近高层建筑的影响。分析结果表明,在软土地区深基坑采用地下连续墙支护对控制土层变形非常有效,可将该建筑物裙楼桩基础土体水平方向变形差值控制在3 mm以下。根据各观测点地表沉降观测记录和计算分析,得出高层建筑周边土体沉降规律,由沉降产生的建筑物倾斜度也在规范限制之内。  相似文献   

14.
以苏州市轨道交通S1线帆路站深基坑项目为例,通过有限元软件MIDAS GTS/NX数值模拟,研究富水软土地区不同基坑降水工况对基坑开挖的安全稳定性影响,考虑了一次性降水和分步降水两种工况,重点分析基坑降水开挖过程中地下连续墙变形、基坑周围地表沉降、支撑轴力的变化规律.结果表明:地下连续墙的变形随深度增加逐渐增大,呈现为...  相似文献   

15.
以杭州某供水管道异形盾构工作井深基坑工程为研究载体,对异形深基坑开挖过程中周围土体沉降及地下连续墙的水平位移规律进行了分析总结。分析表明:深基坑周边土体沉降规律基本一致,在深基坑周围均出现明显凹槽;地下连续墙变形则呈现两边小、中间大的规律,且最大变形值出现位置随开挖逐渐下移。研究成果可为软土地区类似基坑工程的监测方案提供参考,对基坑事故的有效预防及深基坑工程的优化设计亦具有重要意义。  相似文献   

16.
以上海竹园2-16-1地块项目深基坑工程为背景,介绍了邻近地铁的软土深基坑变形控制方法及其效果。根据基坑工程的特点,设计时采取了多种地铁保护专项技术措施,包括基坑分区实施方案、支护体系、钢支撑轴力补偿系统、坑内被动区加固、承压水控制措施等。结果表明:基坑各分区地下连续墙最大侧向位移小于上海软土地区基坑地下连续墙最大侧移的统计平均值0.42%H(H为基坑最大开挖深度),特别是靠近地铁侧的地下连续墙最大侧向位移接近上海软土地区基坑地下墙最大侧移的统计下限值0.1%H; 地铁侧坑外承压水位总体保持在比较平稳的水平,最大水位变化仅为0.72 m; 邻近的地铁隧道上行线和下行线的累计最大沉降量分别为8.2 mm和5.1 mm,均小于地铁下沉量允许值(20 mm),且隧道曲率半径满足控制值要求; 本基坑采用的系统变形控制措施有效地保障了邻近地铁的安全,其设计和施工方法可以为软土地区同类基坑工程设计提供参考。  相似文献   

17.
方建华  陈伟  黄宝森  邹雄  徐鹏 《土工基础》2023,(6):908-914+949
针对绍兴某地铁淤泥质软土深基坑工程地质条件差、周边环境复杂的特点,构建了基坑信息化监测系统,通过分析采集到的基坑围护墙体水平位移、支撑轴力、地表沉降等监测数据,研究深基坑围护结构和周边地表的变形性状。结果表明:(1)淤泥质软土深基坑围护墙变形大,尤其在最后一层土方开挖至底板施工完成期间,变形尤为显著,基坑端头井良好的空间效应有效控制变形;(2)在基坑偏压和坑边荷载的共同作用下,淤泥质软土基坑不同部位围护墙变形特征差异明显。同时随基坑开挖深度的不断增大,第一道钢筋混凝土支撑所受压力不增反减,水平和竖直面上各道支撑轴力也表现出明显的联动性;(3)坑边地表沉降分布近似符合基坑开挖工程的Peck地表沉降规律,最大沉降点距基坑围护结构边的距离xmax取值范围为8~13 m(0.5h~0.9h),计算得到Peck公式中曲线拐点σ值为4 m~7 m。  相似文献   

18.
俞强 《建筑科学》2022,(3):129-138
以福州地铁祥坂站基坑和苏宁B11基坑共用地下连续墙为研究对象,采用弹性法开展了理论计算并基于现场实测数据系统分析了基坑非同步开挖全过程中共用地下连续墙的侧向变形、支撑轴力、墙顶与立柱隆沉等的变化规律。研究结果表明:共用地下连续墙的最大水平侧向变形随着开挖深度的增加而逐渐增大,并表现为一定的空间效应;共用地下连续墙上混凝土支撑轴力的变化与土层侧向变形基本同步,随着基坑开挖深度的增加而逐步增加,并在底板浇筑完成后最终趋于稳定。共用地下连续墙顶部在基坑开挖初始阶段发生一定的沉降变形,而后随着开挖的持续,坑底土的回弹隆起则致使共用地下连续墙快速发生隆起。总体而言,该紧邻深基坑围护结构中的共用地下连续墙能满足工程要求,联合三道混凝土内支撑可较出色地控制基坑侧向位移的发展。研究成果可为类似共用地下连续墙相邻基坑工程的设计与施工提供指导和参考。  相似文献   

19.
为了研究深基坑变形与受力特点,采用现场监测的方法对杭州紫之隧道深基坑进行实测,并探讨了基坑围护结构变形、支撑轴力、地表沉降、建筑物沉降及坑外水位的变化规律。实测分析得出:当基坑的开挖深度增大时,地下连续墙的变形由原先向坑内的前倾型曲线慢慢变成折线型;钢筋混凝土和钢支撑轴力的实测值小于报警值,说明当基坑开挖深度增加时,地下连续墙的结构设计比较保守,而提高轴力的监测频率是加强基坑安全施工的可行手段;地表沉降大小与墙体深层水平位移有较大关系;建筑物的沉降值随着基坑开挖深度的增加而增大,沉降值随时间增长呈线性分布;随着基坑开挖深度的增大,地下水位也相应下降。  相似文献   

20.
以皖江第一隧工作井深基坑为工程背景,对深基坑在开挖过程中的地下连续墙水平位移、立柱与地连墙顶沉降、支撑轴力、地表沉降以及在临江水位汛期时各项监测数据进行分析。研究结果表明:地下地连墙水平位移随着开挖量逐渐增大,而随着汛期灌水反压的进行逐渐减小;立柱的沉降随着灌水反压由沉降逐状态渐变为隆起状态,地连墙随着开挖进行沉降逐渐减小,在灌水反压阶段趋于稳定;在基坑开挖周围10m范围内地表沉降量最大,地表沉降量随着开挖深度增加而增大,不随灌水反压进行而变化;灌水反压措施能够较好地控制基坑在汛期期间结构的变形,保持基坑的稳定性,为解决临江深基坑开挖稳定性问题提供合理有效的依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号