首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Scrubbing using an organic solution instead of an aqueous solution could be a useful way to improve the removal of hydrophobic compounds. Absorption of toluene, dimethyldisulfide (DMDS) and dimethylsulfide (DMS) in an organic solution (di‐2‐ethylhexyladipate—DEHA), followed by biodegradation by activated sludge was considered, with particular attention to kinetic aspects. DEHA was selected for its relevance in terms of absorption capacity and absorption velocity of the selected volatile organic compounds (VOCs). After the biodegradation step and owing to its cost, recycling of the VOC‐free solvent should be considered. RESULTS: Enhancement of VOC mass transfer from the organic to the aqueous phase due to bacterial activity was highlighted and the main driving force was found to be biosurfactant production rather than biodegradation reaction. However, the mass transfer rate between the two phases was shown to be lower than VOC biodegradation rate; hence, significant biodegradation of DMDS and toluene was recorded in a few days during batch experiments, 0.10 and 0.09 mmol respectively. Toluene showed higher biodegradation rates (about 0.05 and 0.10 mg h?1 for DMDS and toluene), leading to higher growth rates. Contrarily, owing to its high volatility, important DMS losses were observed. CONCLUSION: The relevance of the proposed integrated process was shown for hydrophobic VOC removal, at least for toluene and DMDS. Unfortunately, the absorbent phase was also degraded, proved by detection of by‐products during analyses of the aqueous phase headspace. The comparison of DEHA with other solvents or solid polymers available for multiphase bioreactor applications may be a reliable option to continue this work. Copyright © 2010 Society of Chemical Industry  相似文献   

2.
Absorption of hydrophobic volatile organic compounds (VOCs): dimethylsulfide (DMS), dimethyldisulfide (DMDS) and toluene, in organic solvents: di-(2-ethyl)hexyladipate (DEHA), n-hexadecane, oleyl alcohol and PEG 400, was studied. In order to characterise the absorption capacity of various VOC/solvent systems, the Henry's constant (H) was determined. DMS was found to be the least absorbable in all the selected solvents. Amongst these solvents, DEHA was found to be the most efficient to absorb the considered VOCs. The effect of water addition to the considered solvents (emulsions) on the Henry's constants was examined and confirmed a decreasing VOC absorption for an increasing amount of water in solvent. Finally, to quantify the process rapidity, the absorption rate (N) and the overall liquid mass transfer coefficient (KLa) were measured for some selected couples VOC/solvent and revealed a superior efficiency of DEHA compared to other solvents in trapping DMS, DMDS and toluene.  相似文献   

3.
The work focuses on a hybrid process for treating air charged with a hydrophobic volatile organic compound (VOC), coupling an absorption process with membrane pervaporation in order to reuse the absorbent. Toluene was chosen as the target VOC. Four topics were investigated: choice of the absorbent, hydrodynamics and mass transfer in a packed column, regeneration by pervaporation and finally analysis of the coupling of the two processes. In a previous study, 7 absorbents were compared with regard to experimental data (gas-liquid equilibrium constants, viscosity) and data from the literature. Di(2-ethylhexyl) adipate (DEHA) was shown to be the most suitable absorbent. In the first part of this work, experiments in a packed column showed that the viscosity of DEHA led to an increase in pressure drop, which nevertheless remained at a reasonable level. Mass transfer experiments were performed and kinetic constants (KLa) calculated. It was proven than washing with DEHA is highly efficient for toluene absorption. The most innovative part of the work is the regeneration of used absorbent by pervaporation. PDMS was chosen as the active membrane layer. Pervaporation flow rates of toluene were measured for the DEHA-toluene solutions corresponding to column foot concentrations. Transfer resistance is mainly controlled by the liquid boundary layer close to the membrane. The system was modelled and several interesting conclusions deduced. Solving the equations by means of a numerical method enabled calculation of the column height and membrane surface area required to treat a gas flow charged with of toluene.  相似文献   

4.
This work aims to evaluate the feasibility of using imidazolium ionic liquids (ILs) in the design of multiphase bioreactors for the removal of volatile organic compounds (VOCs). The IL affinity for three model VOCs (dimethyl sulfide, dimethyl disulfide and toluene) was evaluated by means of the dimensionless partition coefficient (K). It was observed that ILs showed K values comparable to typical liquid solvents used in multiphase bioreactors for VOC biodegradation (K values ranged from 0.009 to 0.011, 0.0012 to 0.0013 and 0.00061 to 0.00096 for dimethyl sulfide, dimethyl disulfide and toluene, respectively). Toxicity tests showed that both ILs at concentrations of 5% and 10% (v/v) inhibited the glucose uptake of an activated sludge during approximately 24 h. After such lag period, the microorganisms were able to recover its metabolic activity. However, VOC biodegradation experiments showed that ILs at 5% (v/v) were toxic for the activated sludge and a toxic synergistic effect of the IL–VOC combination likely occurred. After acclimation to the target VOCs, only the toluene biodegradation capacity was significantly increased in the presence of ILs. These toxic effects represent a key drawback for the potential of IL-based multiphase systems devoted to VOC biodegradation. Therefore, this study suggests that microbial acclimation only to the VOCs is not enough to get an efficient biodegradation in multiphase systems including ILs as non-aqueous phases.  相似文献   

5.
Conductor‐like‐screening model for real solvents (COSMO‐RS) method was used to analyze the solute‐solvent interactions and to screen Henry's law constant of toluene over 272 ionic liquids (ILs), to select high‐capacity absorbents. Thermogravimetric experiments were carried out to evaluate the toluene absorption by selected ILs at different temperatures and atmospheric pressure. Experimental equilibrium data were found in good agreement with COSMO‐RS predictions. Complete desorption of toluene by N2 stripping was achieved, indicating an easy regeneration. The kinetic curves were described by a phenomenological diffusion model, obtaining effective diffusivities in reasonable concordance with those calculated by Wilke–Chang correlation. The separation process with selected ILs was modeled by Aspen Plus and a comparison with organic absorbents was carried out. Equilibrium‐ and rate‐based simulations were used to analyze the importance of thermodynamics and kinetics in toluene absorption by ILs. Current computational‐experimental research allowed selecting a set of suitable ILs for toluene absorption. © 2012 American Institute of Chemical Engineers AIChE J, 59: 1648–1656, 2013  相似文献   

6.
The morphologies of poly(styrene‐block‐di‐methylsiloxane) (PS‐b‐PDMS) copolymer thin films were analyzed via atomic force microscopy and transition electron microscopy (TEM). The asymmetric copolymer thin films spin‐cast from toluene onto mica presented meshlike structures, which were different from the spherical structures from TEM measurements. The annealing temperature affected the surface morphology of the PS‐b‐PDMS copolymer thin films; the polydimethylsiloxane (PDMS) phases at the surface were increased when the annealing temperature was higher than the PDMS glass‐transition temperature. The morphologies of the PS‐b‐PDMS copolymer thin films were different from solvent to solvent; for thin films spin‐cast from toluene, the polystyrene (PS) phase appeared as pits in the PDMS matrix, whereas the thin films spin‐cast from cyclohexane solutions exhibited an islandlike structure and small, separated PS phases as protrusions over the macroscopically flat surface. The microphase structure of the PS‐b‐PDMS copolymer thin films was also strongly influenced by the different substrates; for an asymmetric block copolymer thin film, the PDMS and PS phases on a silicon substrate presented a lamellar structure parallel to the surface at intervals. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1010–1018, 2007  相似文献   

7.
In this study, retention experiments were performed to characterize the variable sieving properties of a poly(dimethylsiloxane) (PDMS) membrane in relation with operating parameters. The swelling, transmembrane pressure, and temperature are all known to impact the physicochemical properties and morphology of PDMS polymer and were therefore varied for the purposes of our retention experiments which assessed them with the homologous series of polyethylene glycols (PEGs; 200–1500 g mol?1). The objectives were twofold—first, to evaluate the capacity to induce a targeted molecular weight cutoff (MWCO) by selecting appropriate filtration conditions and second to better understand the mechanisms involved during solvent‐resistant nanofiltration with PDMS. The selected solvents or solvent/solvent mixtures used throughout this study were found to induce swelling ratios of 1.16 (ethanol/ethyl acetate: 25/75), 1.26 (ethyl acetate), 1.33 (ethyl acetate/toluene: 50/50), and 1.41 (toluene), respectively. Linear correlations were obtained between the MWCO and the swelling ratio induced by each solvent and between the MWCO and the transmembrane pressure. Pore size calculations using solvent flux and retention data confirmed the variable sieving properties of the PDMS membrane in relation to the solvent‐induced swelling and applied transmembrane pressure. In addition, the study of the solute‐transfer rate through several operating conditions showed that both diffusive and convective transports occurred for the PEG solutes and that their respective contributions appeared dependent on the variable pore size of the PDMS membrane. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41171.  相似文献   

8.
Abstract

Caprolactam is obtained by extraction using organic solvents like benzene, toluene, or chlorinated hydrocarbons. As an alternative solvent, the mixed solvent heptane‐heptanol (40 mass %) was selected in previous studies based on a relatively high distribution ratio of caprolactam, a low mutual solvent solubility, beneficial physical properties, and a low distribution ratio of impurities. Now, the hydraulic and mass transfer characteristics of the extraction of caprolactam in a pulsed disc and doughnut column (PDDC) were investigated using the benign solvent. The results were compared to those for toluene.

The PDDC showed qualitatively comparable operational characteristics for both solvents. In the hydraulic experiments the mixed solvent showed smaller drop diameters and hold‐ups, required lower pulsation intensities for regime transitions, but the operational windows are slightly smaller. For both solvents, mass transfer resulted in increasing drop diameters and pulsation intensities required for regime transition. In the forward extraction the mixed solvent was superior, where HETS/m=0.26 to 0.37, compared to 0.42 to 0.67 for toluene, while less theoretical stages are required as well. For the back‐extraction HETS/m=0.33 to 0.40 for the mixed solvent compared to 0.30 to 0.37, but toluene requires the lower amount of theoretical stages.

The hydraulic characteristics at equilibrium and concentration profiles in both the forward and back‐extraction were described accurately using the developed models.  相似文献   

9.
In this study, methods were developed to enlarge the scope of traditional applications of titanium dioxide (TiO2) and to increase the value of felted fabric by allowing volatile organic compound (VOC) degradation as well as dust filtration in a photoreacting fabric filter. In the past, when a V–Ti mixed catalyst was used, the application of felted fabric as a support material for the catalyst was difficult because the active temperature of the catalyst ranged from 250 to 400°C. Thus, in this study catalyst‐coated felted fabric was manufactured at normal temperature conditions, and then fundamental de‐VOC performance tests were conducted under irradiation condition to develop a fabric filter having a de‐VOC function in addition to a dust‐filtration function. Toluene vapor was selected as a sample VOC because it poses health hazards, has been widely used as an organic solvent, and has been known as a compound that is difficult to dissociate. To manufacture and use a fabric filter that degrades VOCS, and removes dust particles through using photocatalyst‐coated fabrics and light sources, optimum operating conditions were obtained by observing the degradation attributed to varying the toluene‐vapor flow rate, the initial toluene concentration, flue gas humidity, TiO2 loading onto the surface of the fabric, and the intensity and wavelength of a near ultraviolet light lamp. To keep the flue gas humidity at a relatively constant level, a system to automatically control the humidity was constructed. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3174–3179, 2004  相似文献   

10.
Vapor permeation through dense membrane is regarded as an effectively way to separate volatile organic compounds (VOC) from industrial gas stream. This study proposes a new method to get the solubility and diffusivity of pure VOC vapor in dense membrane. C5H12, C6H14 and C7H16 were selected as sample VOC components to conduct newly developed sorption experiment with polydimethylsiloxane (PDMS) membrane. For each considered VOC component, its solubility was obtained from measured sorption equilibrium concentration in PDMS membrane, and its diffusivity was determined by fitting diffusion equation to the measured transient concentration of VOC component. The permeation behavior of VOCs in PDMS membrane was analyzed in terms of their solubility, diffusivity and permeability. Furthermore, the obtained solubility of these VOC components was utilized to get the vapor–membrane interaction parameters in UNIQUAC model. This opens an effective way to obtain the activity coefficient of VOC components for predicting their permeation performance in PDMS membrane.  相似文献   

11.
李加东 《广东化工》2014,(8):113-114,126
选用了国内外文献报道的五种常用有机废气吸收液(矿物油、废机油、二乙基羟胺、聚乙二醇、[BMIM]PF6),采用自行设计的在线吸收装置,实验研究了比较五种吸收液对二甲苯的吸收效果。饱和吸收量、有效吸收量与去除率作为吸收液的评价指标,在相同实验条件下,二乙基羟胺对二甲苯的吸收饱和量最大,其次是矿物油、废机油、[BMIM]PF6,而聚乙二醇去除率最差。本研究结果为二甲苯废气的吸收液的选择提供理论依据。  相似文献   

12.
Not much effort has been focused towards the development of hydrogels that swell in nonpolar solvents. We have synthesized a new set of polyelectrolyte hydrogels and demonstrated their ability to absorb a less‐polar or nonpolar organic solvent, as well as their ability to resist gel‐collapse in a predominantly nonpolar medium. The hydrogels were prepared by free radical polymerization of different molar ratios of poly(ethylene glycol) methyl ether acrylate and (3‐(methacryloylamino)propyl)‐trimethyl ammonium chloride as comonomers in an aqueous medium. Their swelling behavior in organic solvents was studied by varying the dielectric constant of the swelling medium including mixed‐solvent systems. Besides a high degree of swelling (up to 200 times) in polar solvents, some of the hydrogels also exhibited moderate swelling (up to 15 times) in less‐polar organic solvents. Hydrogels samples with high cationic content showed drastic change in swelling extent in some of the mixed‐solvent systems. It was also interesting to note that the retention of significant swelling in dimethyl sulphoxide–toluene mixture with even 90% toluene content for some compositions. These polyelectrolyte hydrogels with improved lipophilicity opens up greater opportunities for the development of even superior soft materials through proper structural optimizations that would successfully function for a wider range of solvents. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39873.  相似文献   

13.
《分离科学与技术》2012,47(9):1294-1301
In order to discuss mass transfer behaviors between volatile organic compound (VOC) and triethylene glycol (TEG) solutions affected by surface tension and equilibrium process. The packed-bed absorption system and the equilibrium system were designed. TEG solution was chosen as the working solution in this study, and the tested VOCs included methanol, methyl ethyl ketone (MEK), toluene, and ethyl ether. Experimental results showed that the order of absorption performances was methanol, MEK, toluene, and ethyl ether in the initial concentrations of VOCs were 24.05% mol and 14.50% mol. This result agreed with the prediction by the equilibrium concentration.  相似文献   

14.
BACKGROUND: There is a lack of systematic studies of biodegradation of mixtures of VOCs with different hydrophobicities in two‐phase partitioning bioreactors (TPPBs). The role of tailored mixtures of solid polymers on the biodegradation of MEK (low hydrophobicity), toluene (moderate hydrophobicity) and hexane (high hydrophobicity) was evaluated under steady state operation and transient loading (2‐ and 3.6‐fold 4 h step increase) in TPPBs. Two mixtures of polymer beads (A and B) were selected based on their 2 h partition coefficients for the target VOCs tested, biocompatibility and resistance to microbial attack. RESULTS: The addition of polymer mixture A (20%) into the bioreactor resulted in a severe microbial inhibition, likely due to the leaching of a polymer component, however, the presence of polymer mixture B (20%) supported removal efficiencies (REs) comparable with those recorded in the absence of polymers during steady state operation (hexane, toluene and MEK REs of 7%, 76% and 98%). However, the presence of polymer mixture B supported enhanced MEK REs during the 2‐fold step increase, and increased toluene removal during the 3.6‐fold step increase compared with the system without polymers. CONCLUSIONS: TPPBs with tailored polymer mixtures can improve process performance during VOC transient loadings, however, the interactions between the target VOCs and the solid polymers used should be a key selection criterion in order to avoid microbial inhibition during TPPB operation. Copyright © 2010 Society of Chemical Industry  相似文献   

15.
An experiment for five stages of a biofilter-run was performed to investigate the effect of hydrophilic ethanol and hydrophobic toluene on the biodegradation of hydrophobic toluene and hydrophilic ethanol, respectively, when waste-air containing toluene and ethanol was treated by a biofilter. Removal efficiencies of toluene and ethanol began to decrease when inlet load surpassed 90 g/m3/h and 100 g/m3/h consistent with maximum elimination capacities of toluene and ethanol, respectively. At the end of the biofilter-run, removal efficiencies for toluene and ethanol were decreased and maintained at 65% and 40%, respectively. The concentration of toluene at 1st sampling port was raised by factor of two in the 3rd stage of the biofilter run when the inlet load of ethanol co-feed was increased by 1.5 times, while the process conditions of toluene were maintained the same as those of the 2nd stage of biofilter-run. According to the result of Mohseni and Allen, it may be interpreted that removal efficiency of hydrophobic toluene was affected by the presence of hydrophilic ethanol when high load of hydrophobic toluene was applied like that of the 1st sampling port of the biofilter. However it was not the case when a low load of hydrophobic toluene was applied like those of the 2nd, 3rd and 4th sampling ports since hydrophobicity of toluene is much less that of α-pinene. Thus, it may be suggested that biodegradation of hydrophobic VOC was interfered by hydrophilic VOC dissolved in the biolayer and the degree of interference was proportional to the inlet load of hydrophobic VOC as well as that of hydrophilic VOC and was inversely proportional to the solubility of hydrophobic VOC. However, it was inferred that the existence of hydrophobic toluene from waste-air can hardly inversely hinder the removal of hydrophilic ethanol in the biofilter when timeevolutions of hydrophilic ethanol concentrations of this experiment were compared with those of the previous experiment of biofilter to treat waste-air containing ethanol only.  相似文献   

16.
Toluene, a kind of volatile organic compound (VOC), is widely used as a solvent (paints and coatings, gums, resins, rubber) as well as a reagent (medicines, dyes, perfumes) and is one of the components of gasoline. Over the more recent decades, many studies have led to the development of biological methods to treat toluene. This paper presents the results of a study on the treatment of airborne toluene using a laboratory‐scale gas–liquid–solid three‐phase airlift loop bioreactor containing immobilized cells. Based on the optimum operating conditions such as the temperature of 28–30 °C, pH of 7.0–7.2, and an empty bed residence time (EBRT) of 39.6 s, a continuous bioprocess showed that this immobilized airlift loop bioreactor had a steady‐state performance within 15 days, the outlet concentrations of toluene were lower than the national emission standard in China (GB 16297‐1996), and the chemical oxygen demand and NH4+‐N of the effluent also satisfied the primary discharge standard in China (GB 8978‐1996). In addition, this immobilized airlift loop bioreactor had a good ability to tolerate shock loads, while the maximum elimination capacity of toluene was 168 g m?3 h?1 which was higher than those not only in biofilters and biotrickling filters but also in the airlift bioreactor with free microorganisms. Copyright © 2005 Society of Chemical Industry  相似文献   

17.
A polydimethylsiloxane (PDMS) membrane was improved by graft polymerization of 1H,1H,9H-hexadecafluorononyl methacrylate (HDFNMA) by plasma, which had the effect of increasing the selectivity for volatile organic compounds (VOCs). The use of an easy quantitative analysis for the pervaporation through plasma-grafted PDMS membranes was investigated. The degrees of grafting on the inside and reverse side of the grafted PDMS membranes were lower than on the surface. Only part of the HDFNMA sorbed into the PDMS membrane was grafted onto the PDMS membrane. The relationship between the feed concentration and the permeate concentration was observed to be linear. The pervaporation through the grafted PDMS membrane could be used for easy quantitative analysis. The solubility of VOCs for the grafted PDMS membrane was high when compared with the solubility for the PDMS membrane. The grafted PDMS membrane that had high VOC concentrations of the sorbed solution showed an excellent separation performance. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 1835–1844, 1999  相似文献   

18.
Silicon oil, chemically known as polydimethylsiloxane (PDMS), is a high boiling point solvent highly suitable for volatile organic compounds (VOCs) absorption. To use PDMS as an absorption solvent for a specific waste gas problem, it is important to determine the infinite dilution activity coefficients of the VOCs to be separated with PDMS. This work reports activity coefficients at infinite dilution of 13 VOCs in polydimethysiloxane determined by the dynamic gas liquid chromatographic technique. The measurements were carried out at various temperatures (303.15, 313.15, 323.15., 333.15, 353.15, 373.15, 393.15 and 423.15 K). Four PDMS polymers with average molecular weight ranging from 760 to 13,000 were used as solvents. A control column packed by Perkin Elmer to our specifications was used to validate the coating and packing methods. Flow rate dependence of the elution peaks was also investigated by varying it from 10–50 ml/min. Precision was improved by reproducing the results using columns with different liquid loading, thus also studying the retention mechanism. The results compare well with the data from previous work using simple headspace and UNIFAC predictions and literature values. The successful comparison gives an indication of the GLC as a rapid, simple and accurate method for studying the thermodynamics of the interaction of a volatile solute with a nonvolatile solvent.  相似文献   

19.
The application of pervaporation (PV) to the removal of volatile organic from aqueous solutions has become very interesting in the last few years. It is caused by the increasing level of compounds, such as petrochemical solvents (benzene, toluene, and xylenes) or chlorinated solvents (trichloroethylene or tetrachloroethylene), which are polluting the natural environment. In this work, effects of polyimide (PI) (prepared by direct polycondensation of dianhydride and diamine followed by thermal cyclization of polyamic acid) filler on PV properties of poly(dimethyl siloxane) (PDMS) have been studied. PDMS membrane filled with PI was used for the separation of benzene (Bz) and toluene (Tol) from the diluted aqueous solution and the results were compared with the neat PDMS membrane of similar thickness. The PDMS‐PI membrane showed normalized flux (J′) upto 1.2 kg μm/m2h for Bz and 1.48 kg μm/m2h for Tol and selectivity of organics varies from 7.3 to 3.2 for Bz and 8.9 to 2.8 for Tol with increasing concentration of organics. Concentration of PI filler in PDMS varied 5–25% w/w. PI filler increases thermal as well as mechanical stability of filled PDMS membranes. PDMS membrane filled with 25% PI was chosen for the pervaporation studies. The membranes were characterized by FTIR, thermogravimetric analyser and scanning electron microscopy. The mechanical strength of PDMS filled with 25% w/w PI (SPI‐25) membrane was found to be 2.7 MPa. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

20.
Herein, the oil/water separation property of four polyethylene (PE) foams with two different volume expansion ratios including 15 and 30 times was studied. We found that the PE‐30‐1 foam was the best absorbent materials among these four samples, which was also superior to the commercially available products. It demonstrated high oil absorption capacities, as well as high oil/water selectivity, which was due to its small average pore size and high porosity. In addition, this work also reports two rapid and straightforward methods to fabricate PE‐30‐1‐ZIF‐8 composite with enhanced compressive property, an encouraging absorption capacity for different organic solvents, reaching 59 times of its own weight for chloroform, as well as increased oil–water selectivity of the system. Comparing with the PE foam, the organic solvent absorption capacities for PE‐ZIF‐8‐sono composite foams were improved by 6.4%, 29%, 9.1%, and 12% for chloroform, acetone, toluene and oleic acid, respectively, while the corresponding improvement for PE‐ZIF‐8‐Me(OH) was about 7.5%, 28%, 14%, and 15%, respectively. These PE‐ZIF‐8 foams could reach the requirement for oil spill cleanup, suggesting its great potential for this type of application. POLYM. ENG. SCI., 59:1354–1361 2019. © 2019 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号