共查询到20条相似文献,搜索用时 15 毫秒
1.
The enormous demand for large wind turbine rotors has led to a need to develop high‐performance and reliable wind turbine rotors. The flexibility of the huge blade was a challenge in creating a balanced design with regard to dynamic behavior, mass, and power output. To enhance the wind turbine rotor, a newly designed wind turbine system with a supporting rod and damper was proposed and investigated. A scaled blade was experimentally tested, with the results indicating an increase in both frequency and damping of the system. Through the use of a self‐coded numerical model, the correlations between the design constraints and the dynamic behavior, tip displacement, and additional mass of the rotor were demonstrated. This showed that the novel rotor has some preferable characteristics in both static and dynamic aspects. In particular, this blade is stiffer and has a smaller tip displacement compared with a traditional cantilevered blade. These characteristics enabled the effective application of the novel rotor to a 5‐MW wind turbine to achieve a 15.16% power output increase based on the blade element momentum theory with Prandtl correction, as well as 5.1% mass savings. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
2.
This paper proposes a comprehensive MPPT method by which extraction of maximum power from wind turbine and its subsequent transfer through various power stages and final delivery to the connected grid are realized. In the proposed system, the operation of the wind turbine at its maximum efficiency point is maintained by control of grid‐tied inverter such that the shaft speed of the generator is set to result the desired optimum tip speed ratio of the turbine. The proposed comprehensive MPPT estimates the required DC link voltage for each wind speed using a unified system model, uses a loss factor to account for the system losses, and then controls the inverter to push the WT extracted maximum power into the grid. The comprehensive MPPT is developed and is validated in MATLAB/Simulink platform in a wide range of operating wind speed. The results ascertain that the wind turbine is made to operate at its maximum efficiency point for all wind speeds below the rated one. 相似文献
3.
4.
A newly developed technique for determining the angle of attack (AOA) on a rotating blade is used to extract AOAs and airfoil data from measurements obtained during the MEXICO (Model rotor EXperiments in COntrolled conditions) rotor experiment. Detailed surface pressure and Particle Image Velocimetry (PIV) flow fields at different rotor azimuth positions are examined for determining sectional airfoil data. The AOA is derived locally by determining the local circulation on the blade from pressure data and subtracting the induction of the bound circulation from the local velocity. The derived airfoil data are compared to 2D data from wind tunnel experiments and XFOIL computations. The comparison suggests that the rotor is subject to severe 3D effects originating from the geometry of the rotor, and explains why the Blade Element Momentum technique with 2D airfoil data over‐predicts the loading of the rotor. The extraction technique is verified by employing the derived airfoil characteristics as input to computations using the BEM technique and comparing the calculated axial and tangential forces to the measured data. The comparison also demonstrates that the used technique of determining the AOA is a reliable tool to extract airfoil data from experimental data. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
5.
Two simple methods for determining the angle of attack (AOA) on a section of a rotor blade are proposed. Both techniques consist of employing the Biot–Savart integral to determine the influence of the bound vorticity on the velocity field. In the first technique, the force distribution along the blade and the velocity at a monitor point in the vicinity of the blade are assumed to be known from experiments or CFD computations. The AOA is determined by subtracting the velocity induced by the bound circulation, determined from the loading, from the velocity at the monitor point. In the second method, the full pressure distribution on the blade is assumed to be known and used to determine the local distribution of circulation along the surface contour of the blade. Using the local distribution of circulation to determine the influence of the bound vorticity enables the velocity monitor points to be located closer to the blade, and thus to determine the AOA with higher accuracy. Data from CFD computations for flows past the Tellus 95 kW wind turbine at different wind speeds are used to test both techniques. Comparisons show that the proposed methods are in good agreement with existing techniques. The advantage of the proposed techniques, as compared with existing techniques, is that they can be used to determine the AOA on rotor blades under general flow conditions (e.g. operations in yaw or with dynamic inflow). Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
6.
7.
The design of a three‐bladed wind turbine rotor is described, where the main focus has been highest possible mechanical power coefficient, CP, at a single operational condition. Structural, as well as off‐design, issues are not considered, leading to a purely theoretical design for investigating maximum aerodynamic efficiency. The rotor is designed assuming constant induction for most of the blade span, but near the tip region, a constant load is assumed instead. The rotor design is obtained using an actuator disc model, and is subsequently verified using both a free‐wake lifting line method and a full three‐dimensional Navier–Stokes solver. Excellent agreement is obtained using the three models. Global CP reaches a value of slightly above 0.51, while global thrust coefficient CT is 0.87. The local power coefficient Cp increases to slightly above the Betz limit on the inner part of the rotor; the local thrust coefficient Ct increases to a value above 1.1. This agrees well with the theory of de Vries, which states that including the effect of the low pressure behind the centre of the rotor stemming from the increased rotation, both Cp and Ct will increase towards the root. Towards the tip, both Cp and Ct decrease due to tip corrections as well as drag. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
8.
9.
风力机特性的直流电动机模拟及其变速恒频风力发电研究中的应用 总被引:8,自引:0,他引:8
为了能在不具备风场环境的实验室条件下对双馈异步发电机的交流励磁发电技术进行实验研究,该文提出了采用直流电动机模拟风力机工作特性的实现方案。该方法基于风力机和直流电动机在功率(转矩)特性上的相似性,采用转矩控制方案实现了风力机特性的直流电动机模拟,进而构建了整个变速恒频DFIG风力发电装置的实验系统。首次在实验室环境下实现了最大风能动态追踪、P、Q解耦控制的实验研究,验证了直流电动机模拟风力机特性的可实现性和变速恒频DFIG风力发电系统最大风能追踪控制策略的正确性。 相似文献
10.
11.
Rotor‐layer wind resource and turbine available power uncertainties prior to wind farm construction may contribute to significant increases in project risk and costs. Such uncertainties exist in part due to limited offshore wind measurements between 40 and 250 m and the lack of empirical methods to describe wind profiles that deviate from a priori, expected power law conditions. In this article, we introduce a novel wind profile classification algorithm that accounts for nonstandard, unexpected profiles that deviate from near power law conditions. Using this algorithm, offshore Doppler wind lidar measurements in the Mid‐Atlantic Bight are classified based on goodness‐of‐fit to several mathematical expressions and relative speed criteria. Results elucidate the limitations of using power law extrapolation methods to approximate average wind profile shape/shear conditions, as only approximately 18% of profiles fit well with this expression, while most consist of unexpected wind shear. Further, results demonstrate a relationship between classified profile variability and coastal meteorological features, including stability and offshore fetch. Power law profiles persist during unstable conditions and relatively weaker northeasterly flow from water (large fetch), whereas unexpected classified profiles are prevalent during stable conditions and stronger southwesterly flow from land (small fetch). Finally, the magnitude of the discrepancy between hub‐height wind speed and rotor equivalent wind speed available power estimates varies by classified wind‐profile type. During unexpected classified profiles, both a significant overprediction and underprediction of hub‐height wind available power is possible, illustrating the importance of accounting for site‐specific rotor‐layer wind shear when predicting available power. 相似文献
12.
The stability of the electrical grid depends on enough generators being able to provide appropriate responses to sudden losses in generation capacity, increases in power demand or similar events. Within the United States, wind turbines largely do not provide such generation support, which has been acceptable because the penetration of wind energy into the grid has been relatively low. However, frequency support capabilities may need to be built into future generations of wind turbines to enable high penetration levels over approximately 20%. In this paper, we describe control strategies that can enable power reserve by leaving some wind energy uncaptured. Our focus is on the control strategies used by an operating turbine, where the turbine is asked to track a power reference signal supplied by the wind farm operator. We compare the strategies in terms of their control performance as well as their effects on the turbine itself, such as the possibility for increased loads on turbine components. It is assumed that the wind farm operator has access to the necessary grid information to generate the power reference provided to the turbine, and we do not simulate the electrical interaction between the turbine and the utility grid. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
13.
Wind energy technology is evolving towards larger machines (longer blades, taller towers and more powerful generators). Scaling up wind turbines is a challenging task, which requires innovative solutions as well as new configurations and designs. The size of wind turbines (in terms of rotor diameter, hub height and rated power) has increased extraordinary from 30 m rotor diameter, 30 m of hub height and 300 kW rated power, usual in the late 1980s, to 92.7 m rotor diameter, 87.7 m of height and 2.1 MW on average at the end of 2014. However, technological evolution has not only been focused on the scaling up process but also on developing innovative solutions that minimize costs at the same time as they deal with aspects of different nature, such as grid code requirements, reliability, quality of the wind resource or prices and availability of certain commodities, among others. This paper analyses the evolution of wind technology from a market‐based perspective by identifying trends in the most relevant technological indicators at the same time as stressing the key differentiating aspects between regions/markets. Evolution and trends in indicators such as rated power, rotor diameter, hub height, specific power, wind class, drive train configuration and power control systems are presented and analysed, showing an intense and fast technological development, which is enabling wind energy to reduce costs and becoming increasingly more competitive with conventional fuel‐based generating technologies. © 2016 The Authors Wind Energy Published by John Wiley & Sons Ltd. 相似文献
14.
15.
简要介绍了小型风力机的应用现状,从政策、技术优势、风资源利用以及投资经济性等多方面分析了小型风力机的发展优势,并对小型风力机的发展趋势进行了展望。 相似文献
16.
When the installed capacity of wind power becomes high, the power generated by wind farms can no longer simply be that dictated by the wind speed. With sufficiently high penetration, it will be necessary for wind farms to provide assistance with supply‐demand matching. The work presented here introduces a wind farm controller that regulates the power generated by the wind farm to match the grid requirements by causing the power generated by each turbine to be adjusted. Further, benefits include fast response to reach the wind farm power demanded, flexibility, little fluctuation in the wind farm power output and provision of synthetic inertia. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
17.
动力涡轮转子低速动平衡的特点 总被引:1,自引:0,他引:1
动力涡轮转子结构有其特殊性,在无高速动平衡条件下做动平衡时需采取诸多措施,才能达到高速动平衡的效果。根据转子的结构特点,转了了在纵向各段产生不同挠度,对转子纵向各段分别进行低速动平衡,从而达到高速动平衡的结果,保证转子安全平衡运行。 相似文献
18.
建立了大型水平轴风轮转子/塔架耦合系统的气动弹性模型,推导了转子/塔架耦合系统周期系数运动方程,给出了气动弹性稳定性分析方法。对一风力机模型进行气动弹性稳定性计算,得到了与有关文献基本一致的结果。 相似文献
19.
20.
为了给电网控制策略提供可靠的参考依据,对电网在接入风机后电能质量的变化进行了详尽的分析。风机作为电源同时也作为非线性负载接入配电网中使得电能质量的分析更加复杂。首先对国标中着重介绍的稳态电能质量:电压偏差,三相不平衡度,谐波以及电压波动进行理论介绍,然后在Matlab/Simulink上建立了配电系统与风机并网的模型,得到风机对电能质量不同方面的影响程度,最后采用先进电力电子设备为平稳电压电流输出提供一定的方法,并进行验证。研究结果表明,电力谐波和电压波动闪变是风机对电网的最主要的影响因素。 相似文献