共查询到20条相似文献,搜索用时 0 毫秒
1.
CO_2减排、处理技术的量化讨论与分类评价 总被引:3,自引:1,他引:2
全球变暖的主要原因是由于大量温室气体排放导致了温室效应,而温室气体的主要组成部分就是CO2。Q1为人类对环境的最低要求值所对应的CO2总量,当大气中的CO2总量大于Q1时,表示环境已不适合人类居住和发展。大气中CO2总量随时间变化的峰值Q2必须远小于Q1,否则CO2排放对人类社会构成的危险性依然很大。在假设能源消耗全部用于GDP的增长,所有能量只分为碳能量和氢能量两部分,对CO2技术的资金投入由P1、P2、P3三部分组成的基础上,引入与CO2变化相关的量化关系式。根据关系式,可以通过提高能源利用效率、减少能源浪费、发展可再生能源和替代能源、改变能源结构来降低单位GDP的CO2排放量。发达国家应将技术资金投入的重点放在发展可再生能源与CO2捕集和储存技术方面,而发展中国家投资的重点应放在提高能源利用效率方面。CO2减排和净化处理技术可分为降低单位GDP的CO2排放量、CO2的暂时储存和CO2的永久固化3个方面。我国现阶段应加大提高能源利用效率和增加清洁能源比例的投入;从长远来看,应加大对CO2捕集和储存技术的投入,特别是实现永久性储存。 相似文献
2.
陈泠卉 《电网与水力发电进展》2019,35(12):60-66
可再生能源电力系统负荷调度容易受到不确定性因素的影响,没有考虑备用调度因素,导致电力系统调度效果较差。针对该问题,提出可再生能源电力系统负荷平衡化分散调度方法研究。根据动态负荷平衡系统结构,建立单区域考虑多重不确定性负荷平衡化分散调度模型,并描述负荷在时间段内的变化值,以此确定调度目标函数。在相关约束条件下,使各个负荷预测误差相互独立,保证本区域负荷波动一致,完成多重不确定性负荷平衡化分散调度。在既定联络线功率下保持约束条件不变,通过引入协调优化乘子项,计算第二层下级优化目标函数,实现备用分散协调调度。仿真实验结果表明,该方法具有良好的抗干扰性,调度效果最高可达到99%。 相似文献
3.
A peak‐shaving technology is recently proposed, which integrates peak‐electricity generation, cryogenic energy storage and CO2 capture. In such a technology, off‐peak electricity is used to produce liquid nitrogen and oxygen in an air separation and liquefaction unit. At peak hours, natural gas (or alternative gases, e.g. from gasification of coal) is burned by oxygen from the air separation unit (oxy‐fuel combustion) to generate electricity. CO2 produced is captured in the form of dry ice. Liquid nitrogen produced in the air separation plant not only serves as an energy storage medium but also supplies the low‐grade cold energy for CO2 separation. In addition, waste heat from the tail gas can be used to superheat nitrogen in the expansion process to further increase the system efficiency. This article reports a systematic approach, with an aim to provide technical information for the system design. Three potential blending gases (helium, oxygen and CO2) are considered not only for assessing thermodynamic performance but also for techno‐economic analysis. The peak‐shaving systems are also compared with natural gas combined cycle and an oxy–natural gas combined cycle in terms of capital cost and peak electricity production cost. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
4.
This work reports a newly proposed system for electrical energy storage. The new system combines a direct open nitrogen (cryogen) expansion cycle with a natural gas‐fuelled closed Brayton cycle and the CO2 produced in the system is captured in the form of dry ice. Thermodynamic analyses are carried out on the system under the baseline conditions of 1 kg s?1 natural gas, a combustor operating pressure of 8 bars and a cryogen topping pressure of 100 bars. The results show that the exergy efficiency of the proposed system is as high as 64% under the baseline conditions, whereas the corresponding electricity storage efficiency is about 54%. A sensitivity analysis has also been carried out on the main operating conditions. The results indicate that the baseline performance can be enhanced by increasing the gas turbine (GT) inlet temperature, decreasing the approach temperature of the heat exchange processes, operating the combustor at an optimal pressure of ~7 bars and operating the cryogen topping pressure at ~90 bars. Further enhancement can be achieved by increasing the isentropic efficiency of the GT and the liquefaction process. The results of this work also suggest that the power capacity installation of peak‐load units and fuel consumption could be reduced by as much as 50% by using the newly proposed system. Further work is suggested for an economic analysis of the system. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
5.
In this paper we assess the feasibility of various future energy production pathways for hydrogen. We argue that neither nuclear energy, nor coal gasification with carbon collection and storage can provide sufficient climate-neutral energy to be probable routes to a hydrogen future. Their contributions are likely to be too little and too late to be of much help. Hydroelectricity, geothermal and biomass energy can all provide base-load power, but even combined have limited potential, and are not always climate-neutral in operation. On the other hand, the high-potential renewable energy (RE) sources, particularly wind and direct solar energy, are intermittent. Further, wind resources are poorly matched to the existing distribution of world population. Wind power's high potential compared with present electricity demand, high return on energy invested, intermittency, and mismatch with load centres all favour hydrogen conversion and transmission to load centres. 相似文献
6.
Due to the size and structure of its economy, Germany is one of the largest carbon emitters in the European Union. However, Germany is facing a major renewal and restructuring process in electricity generation. Within the next two decades, up to 50% of current electricity generation capacity may retire because of end-of-plant lifetime and the nuclear phase-out pact of 1998. Substantial opportunities, therefore, exist for deployment of advanced electricity generating technologies in both a projected baseline and in alternative carbon policy scenarios. We simulate the potential role of coal integrated gasification combined cycle (IGCC), natural gas combined cycle (NGCC), carbon dioxide capture and storage (CCS), and wind power within a computable general equilibrium model of Germany from the present through 2050. These advanced technologies and their role within a future German electricity system are the focus of this paper. We model the response of greenhouse gas emissions in Germany to various technology and carbon policy assumptions over the next few decades. In our baseline scenario, all of the advanced technologies except CCS provide substantial contributions to electricity generation. We also calculate the carbon price where each fossil technology, combined with CCS, becomes competitive. Constant carbon price experiments are used to characterize the model response to a carbon policy. This provides an estimate of the cost of meeting an emissions target, and the share of emissions reductions available from the electricity generation sector. 相似文献
7.
Kay Damen Martijn van Troost Andr Faaij Wim Turkenburg 《Progress in Energy and Combustion Science》2007,33(6):580-609
Promising electricity and hydrogen production chains with CO2 capture, transport and storage (CCS) and energy carrier transmission, distribution and end-use are analysed to assess (avoided) CO2 emissions, energy production costs and CO2 mitigation costs. For electricity chains, the performance is dominated by the impact of CO2 capture, increasing electricity production costs with 10–40% up to 4.5–6.5 €ct/kWh. CO2 transport and storage in depleted gas fields or aquifers typically add another 0.1–1 €ct/kWh for transport distances between 0 and 200 km. The impact of CCS on hydrogen costs is small. Production and supply costs range from circa 8 €/GJ for the minimal infrastructure variant in which hydrogen is delivered to CHP units, up to 20 €/GJ for supply to households. Hydrogen costs for the transport sector are between 14 and 16 €/GJ for advanced large-scale coal gasification units and reformers, and over 20 €/GJ for decentralised membrane reformers. Although the CO2 price required to induce CCS in hydrogen production is low in comparison to most electricity production options, electricity production with CCS generally deserves preference as CO2 mitigation option. Replacing natural gas or gasoline for hydrogen produced with CCS results in mitigation costs over 100 €/t CO2, whereas CO2 in the power sector could be reduced for costs below 60 €/t CO2 avoided. 相似文献
8.
本文对CO2捕集和封存技术的现状、前景和可能遇到的挑战进行了论述,指出CO2捕集是煤炭现代化利用的一个重要趋势。同时指出,成本、捕集效率和方式都是影响CO2捕集和封存发展的重要因素,目前一些问题仍需要得到进一步证实。 相似文献
9.
Photocatalytic conversion of CO2 into value‐added hydrocarbon fuels and/or useful chemical products, using solar energy, has been the focus of active research, owing to its tremendous potential to provide a green fuel (eg, methanol) and simultaneously mitigate global warming by reducing CO2 levels in the atmosphere. CO2 photocatalytic reduction yields various hydrocarbon products. In this paper, we focus on methanol as it is an easily transportable energy‐dense fuel with multifarious applications in the automobile, industrial, and petrochemical sector. The photocatalytic conversion rate of CO2 to methanol depends on 3 factors: the photocatalyst used, photoreactor design, and experimental parameters (or variables). The last factor—experimental parameters—forms the basis of this review paper. These parameters include the reaction temperature, CO2 pressure, solvent used, intensity, wavelength, and duration of the incident light, concentration of organic impurities adsorbed on catalytic surface, addition of hole scavengers, type of reductant used, catalyst loading method, catalyst concentration, and the dissolved oxygen concentration. There have been numerous published works aiming to improve the methanol formation rate by optimizing these experimental parameters. In this paper, we consolidate and review these parameters, and investigate how optimizing them can enhance the photocatalytic conversion rate of CO2 into methanol, thus ushering in the era of a green methanol‐based economy. 相似文献
10.
Muhammad Abdul Basit Saad Dilshad Rabiah Badar Syed Muhammad Sami ur Rehman 《国际能源研究杂志》2020,44(6):4132-4162
In the modern world, only conventional energy resources cannot fulfil the growing energy demand. Electricity is a fundamental building block of a technological revolution. Today, most of the electricity demand is met by the burning of fossil fuels but at the cost of adverse environmental impact. In order to bridge the gap between electricity demand and supply, nonconventional and eco-friendly means of energy generation are considered. Renewable energy systems (RESs) offer an adequate solution to mitigate the challenges originated due to greenhouse gasses (GHG). However, they have an unpredictable power generation with specific site requirements. Grid integration of RESs may lead to new challenges related to power quality, reliability, power system stability, harmonics, subsynchronous oscillations (SSOs), power quality, and reactive power compensation. The integration with energy storage systems (ESSs) can reduce these complexities that arise due to the intermittent nature of RESs. In this paper, a comprehensive review of renewable energy sources has been presented. Application of ESSs in RESs and their development phase has been discussed. Role of ESSs in increasing lifetime, efficiency, and energy density of power system having RESs has been reviewed. Moreover, different techniques to solve the critical issues like low efficiency, harmonics, and inertia reduction in photovoltaic (PV) systems have been presented. Unlike most of the available review papers, this article also investigates the impact of FACTS technology in RESs-based power system using multitype flexible AC transmission system (FACTS) controllers. Three simulation models have been developed in MATLAB/Simulink. The results show that FACTS devices help to maintain the stability of RESs integrated power system. This review paper is believed to be of potential benefit for researchers from both the industry and academia to develop better understanding of challenges and solution techniques for REs-based power systems and future research dimensions in this area. 相似文献
11.
德国新能源和可再生能源立法模式及其对我国的启示 总被引:4,自引:0,他引:4
在欧盟新能源和可再生能源立法的强力推动下,德国针对电力、交通和供热供冷等不同领域进行新能源和可再生能源立法,其中电力领域的立法进行得尤为深入;德国制定的2020年交通领域可再生能源利用目标为17%;2020年可再生能源在供热领域最终能源消费总额中的比例将达到14%。在出台各种法律的同时,德国还制定出新能源和可再生能源法规,典型例子是海上风电和生物质发电。德国新能源和可再生能源相关法律法规健全,其中电力和燃气产业、节能和能效以及气候变化三大领域的法律法规尤为重要。作为一个对化石能源有着巨大需求的国家,德国的二氧化碳减排进行得卓有成效,2007年较之于1990年,二氧化碳排放总量下降17.5%,人均二氧化碳排放量下降19%,一次能源供应和经济产出的碳排放强度分别下降10.9%和37.2%。同时还带动了欧盟的二氧化碳减排。相比于德国,我国新能源和可再生能源电力立法存在明显缺陷,一是缺乏深度,二是缺乏定力,三是缺乏耐心。德国新能源和可再生能源立法模式给予我国的启示是:能源立法应从小处做起,不应避重就轻,能源立法应一揽子化。 相似文献
12.
储能技术在电力系统中具有削峰填谷、一次调频、提高电网稳定性、改善电能质量、提高电网利用率、提高可再生能源的利用率等重要作用。介绍了抽水储能、飞轮储能、压缩空气储能、钠硫电池储能、锂离子电池储能、液流电池储能等典型储能技术以及各自的国内外研究动态,比较了各种储能技术的优缺点,并对储能技术在电力系统中的不同应用进行了综述。 相似文献
13.
14.
This paper presents comparative yet extensive analysis of existing non-conventional renewable resources, energy policies and gaps in BRICS countries. An intelligent transformation to green economy to maintain natural resources is noted. Brazil has stable energy policies and is the leading producer of biofuels following hydropower until 2014 but supported wind and solar power development by tendering specific tariffs for energy generation from solar and wind. Russia needs improvement in its legal and regulatory framework with more incentives in energy policies. China is improving upon wind and hydropower but it needs strong policy measures to put cap on increased CO2 emissions. India needs revision in energy policy and requires extra incentives and consumer specific energy policies for research-infrastructure and energy generation technologies. South Africa requires lessons to increase renewable energy and reduce coal mining. Moreover, BRICS countries need to redefine their energy policies based upon their existing geographical, economical, societal and environmental conditions which will help in shaping global energy policies and more financial stability. This paper recognizes the potential of BRICS to reshape the global system paralleled with minimizing CO2 emissions. The concerted role of BRICS needs to be recognized as the leading contributor of global renewable capacity where the developed world is geared and busy to address the environmental issues. 相似文献
15.
旨在探讨面向碳中和背景下直接空气捕碳(Direct Air Capture,DAC)技术的发展现状、应用案例及其经济性评估,以期为我国实现碳减排目标提供参考。 文章综述了DAC技术的工作原理、类型、运用案例,并分析了其在国内外的发展情况。通过比较不同研究中的成本数据,评估了DAC技术的经济性,并讨论了当前面临的挑战与可能的解决措施。 研究发现,DAC技术能有效从空气中捕集CO2,具有布置灵活、可与可再生能源结合等优点。但其商业化应用仍受到高成本、高能耗和大规模部署的技术挑战的限制。国内外的案例分析揭示DAC技术在实际应用中的效率和成本问题亟待解决,同时也显示了通过技术改进和政策支持可能实现的优化潜力。 尽管存在挑战,DAC技术仍是实现碳中和目标的潜在储备技术,尤其对中国等面临严峻碳减排压力的国家具有重要意义。需要集中研究力量开发更高效、低成本的吸收/吸附剂,改进系统设计,降低能源消耗,并积极探索与可再生能源的结合使用。政府的政策支持和社会的广泛认可也是实现DAC技术商业化的关键因素。通过这些措施可以推动DAC技术的发展和应用,助力实现碳减排和环境保护的双重目标。 相似文献
16.
能源安全前提下的绿色低碳转型与工业结构调整是浙江省“碳达峰碳中和”工作面临的严峻挑战。由于浙江省煤电发电量占比较高,碳捕集利用与封存技术(CCUS)有望在浙江省能源与工业等领域的双碳技术体系中扮演重要角色,是实现化石能源大规模低碳利用的重要技术选择。 从CO2捕集、输送、利用与封存方面综述了浙江省CCUS技术的研究进展,介绍了浙江省CCUS工程示范项目的开展情况;总结了CCUS全链条各环节主要技术的特点,简要分析了当前CCUS技术发展的问题;展望了CCUS技术在浙江省的发展前景,并提出了发展建议。 浙江省在CCUS各环节,特别是CO2捕集方面拥有良好的技术储备。省内全流程示范项目工艺路线多样,捕集侧包括燃烧前和燃烧后捕集,利用与封存侧涵盖生物、矿化、化工利用及地质封存,各环节技术成熟度差异化较明显。项目规模较小,初投资和运行成本普遍较高,空间分布分散,不利于形成产业集群。 需准确把握浙江省重点领域CCUS潜力和源汇条件,因地制宜推广CCUS集成项目,持续开展技术研发,并在激励机制、政策法规、商业模式等方面予以保障。 相似文献
17.
Wandong Zheng Jay J. Hennessy Hailong Li 《Wiley Interdisciplinary Reviews: Energy and Environment》2020,9(1)
Emissions reductions are often achieved through the increased share of renewable energy sources (RES) and China is the leader in the growth of RES in the power sector. This growth has led to high levels of curtailment of RES power due to insufficient reinforcement of the electricity grid to support such growth and due to competition with other power sources. Although the problem of curtailment has been alleviated in recent years, large amounts of power are still discarded, and it is important to consider how to address this problem in the short term and how much CO2e emissions could be avoided as a result. The use of district heating systems to reduce the curtailment of renewable power has seen increasing interest in recent years. Based on a review of potential energy storage in district heating, the current paper assesses the capability to use the national storage potential of district heating systems in China to reduce curtailment and to determine what effects that may have on avoiding CO2e emissions. The distribution networks and the thermal inertia of buildings connected to district heating are considered as two major forms of storage that can be “charged” using power that would otherwise be curtailed. The results show that there may be sufficient storage available to absorb all renewable power that is currently curtailed in those provinces using district heating during the heating season, resulting in avoided emissions of up to 14 MtCO2e/annum. This article is categorized under:
- Energy and Climate > Economics and Policy
- Wind Power > Climate and Environment
- Energy Infrastructure > Climate and Environment
- Energy and Urban Design > Climate and Environment
18.
地下含水层储能技术的应用条件及其关键科学问题 总被引:5,自引:0,他引:5
地下含水层储能已成为一项应用日益广泛的实用储能技术,可以很好的应用于大型空调项目。含水层储能系统能够跨季节利用夏季的热和冬季的冷,有效减少化石燃料的使用量进而减少对大气的污染。论述了含水层储能的基本概念、工作原理,分析了地下含水层储能技术的应用条件-水文地质条件、回灌水水质条件,进一步提出了利用地下含水层储能技术需要解决的关键问题,包括储能流体及热前沿的形状和位置、储能位置和含水层的选择、储能过程与环境的作用、储能系统的安全性、可靠性和经济性等。地下含水层储能技术具有节能和环保的重要意义,因而它具有广阔的应用前景。 相似文献
19.
20.
大力发展可再生能源并实现清洁能源变革,是实现碳达峰碳中和的重要途径,电网对各种储能技术的需求日益增长,而规模化储能技术是有效解决可再生能源并网问题的重要技术途径。抽水储能是标杆性的物理储能技术,技术成熟、应用广泛且装机容量最大,是规模化物理(重力)储能技术的典范;重力储能是最近引发广泛关注的新型物理储能技术,按照应用场景的不同分为多种技术类型。本文首先介绍了依托山体、倾斜矿井的斜坡重力储能的原理和结构,并根据应用场景和技术特点进行了分类阐述,包括依托山体斜坡的抽水储能、轨道式重力储能和缆索式重力储能等技术类型;然后回顾了不同类别依托斜坡重力储能技术的研究进展和应用情况,并阐述了每种技术类型的优势和不足;据此提出一种更为优化的斜坡重力储能技术——斜坡缆-轨式重力储能技术,不仅融合了斜坡轨道式重力储能与斜坡悬架缆车式重力储能的优点,且避免了两者的缺点;最后概述了当前斜坡重力储能技术存在的关键问题,并就其发展与推广应用进行了展望。 相似文献