首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Analyzing fluid dynamics and heat transfer holds significant importance in the design and enhancement of engineering systems. The current investigation utilizes the finite element method to explore natural convection and heat transfer intricacies within a novel cavity containing an inner circular cylinder under steady and laminar flow conditions. The principal aim of this study is to assess the impact of Rayleigh number (Ra), Bejan number (Be), and the presence of adiabatic, hot, and cold cylinders on heat transfer, entropy generation, and fluid flow. The range of Ra considered in this investigation spans from 103 to 106, while the Prandtl number for the air is fixed at 0.71. The findings illustrate that the presence of a cylinder leads to higher Be as Ra increase, compared to scenarios where no cylinder is present. This observation suggests that buoyancy forces dominate in the absence of a cylinder, resulting in significantly enhanced convective heat transfer efficiency. However, the presence of a heated cylinder within the tooth-shaped cavity exerts a substantial influence on the overall thermal performance of the system. Notably, the average Nusselt Number (Nu) experiences a remarkable increase of 41.97% under the influence of a heated cylinder, when compared to situations where a cold cylinder is present. This elevated average Nu signifies improved heat transfer characteristics, ultimately resulting in an overall improvement in the thermal system's efficiency.  相似文献   

2.
3.
4.
The present study numerically explores the mixed convection phenomena in a differentially heated ventilated square cavity with active flow modulation via a rotating plate. Forced convection flow in the cavity is attained by maintaining external fluid flow through an opening at the bottom of the left cavity wall while leaving it through another opening at the right cavity wall. A counter-clockwise rotating plate at the center of the cavity acts as an active flow modulator. Moving mesh approach is used for the rotation of the plate and the numerical solution is achieved using arbitrary Lagrangian-Eulerian finite element formulation with a quadrilateral discretization scheme. Transient parametric simulations have been performed for various frequency of the rotating plate for a fixed Reynolds number (Re) of 100 based on maximum inlet flow velocity while the Richardson number (Ri) is maintained at unity. Heat transfer performance has been evaluated in terms of spatially averaged Nusselt number and time-averaged Nusselt number along the heated wall. Power spectrum analysis in the frequency domain obtained from the fast Fourier transform analysis indicates that thermal frequency and plate frequency start to deviate from each other at higher values of velocity ratio (>4).  相似文献   

5.
In this study, the effect of different chord shapes of a triangular cavity has been investigated on the natural convection heat transfer characteristics inside the cavity using the commercial ANSYS‐FLUENT software. Heat transfer phenomena have been regarded as very significant due to the widespread application of natural convection heat transfer in different engineering fields. According to the performed studies, the chord with partitions can considerably enhance the natural convection heat transfer rate inside the cavity. Four different types of partitions including zigzag, two types of rectangular and sinusoidal were considered on the chord of the triangular cavity. The dimensionless parameters investigated in the results include Rayleigh number, Prandtl number, and Nusselt number. The results comprise the isotherm lines, streamlines, velocity lines, local and average Nusselt numbers analyzed with regard to the chord type and Rayleigh number variation. The results revealed that the temperature trend is almost the same for all configurations. Furthermore, the average Nusselt number value in zigzag and sinusoidal is higher in comparison with other cases due to the larger heat transfer area. Finally, by examining the streamlines, isotherm and velocity lines, average and local Nusselt numbers, it was founded that the cavities with zigzag and sinusoidal chord shape have the better performance in terms of heat transfer rate.  相似文献   

6.
Solar cavity receiver plays a dominant role in the light-heat conversion. Its performance can directly affect the efficiency of the whole power generation system. A combined calculation method for evaluating the thermal performance of the solar cavity receiver is raised in this paper. This method couples the Monte-Carlo method, the correlations of the flow boiling heat transfer, and the calculation of air flow field. And this method can ultimately figure out the surface heat flux inside the cavity, the wall temperature of the boiling tubes, and the heat loss of the solar receiver with an iterative solution. With this method, the thermal performance of a solar cavity receiver, a saturated steam receiver, is simulated under different wind environments. The highest wall temperature of the boiling tubes is about 150 °C higher than the water saturation temperature. And it appears in the upper middle parts of the absorbing panels. Changing the wind angle or velocity can obviously affect the air velocity inside the receiver. The air velocity reaches the maximum value when the wind comes from the side of the receiver (flow angle α = 90°). The heat loss of the solar cavity receiver also reaches a maximum for the side-on wind.  相似文献   

7.
The characteristics of transition from laminar to chaotic mixed convection in a two-dimensional multiple ventilated cavity is analyzed in this paper. The horizontal air streams enter the cavity from the two inflow-openings near the top of both vertical walls, while the outflow openings are near the bottoms of both vertical walls. The results obtained for a range of the Richardson number, Ri, from 0.01 to 5 at Pr = 0.71, the Reynolds number, Re, from 1000 to 2500 and the inlet flow angle, φ, based on 0°, 20°, 45° and 70°. The results show that, as Ri increases, the solution may exhibit a change from steady-state to periodic oscillation, and then to non-periodic oscillatory state. However, the flow inside the cavity becomes steady-state again as Richardson number increases further. The results also show that the effect of inlet flow angle on the oscillations of mixed convection is evident, the configuration with φ = 0° is the most unstable among the four values of φ. The non-periodic oscillatory solution at Re = 2500 is studied by means of phase portraits, correlation dimension, Kolmogorov entropy and Lyapunov exponents to detect chaos. The phase portraits show the evolution of the attractor from a stable fixed point to a limited cycle to chaos, and finally, to a stable fixed point again, and the correlation dimension, Kolmogorov entropy and the largest Lyapunov numbers all show that the behavior of mixed convection in this dynamical system lies on a low-dimensional chaotic attractor according to the non-periodic oscillatory solution.  相似文献   

8.
Mixed convection heat transfer in a cubical cavity with an isothermally heated blockage inside filled with a hybrid nanofluid (HBNF) is numerically studied. The natural convection is created by the temperature difference between the hot block and the cold lateral walls, while the forced convection is generated by moving the upper wall. The influence of some variables, like the aspect ratio (0.1 ≤ r ≤ 0.5), Richardson number (0 ≤ Ri≤ 20), Reynolds number (50 ≤ Re ≤ 200), volume concentration of nanoparticles (0 ≤ ϕ ≤ 0.06), and the concentration ratio (2:8, 5:5, and 8:2) on the flow field and heat transfer is analyzed. A comparison between hybrid and mono nanofluids (NFs) is realized to investigate the energy transport enhancement. Results show that the increase of each parameter causes an increase of average Nusselt number Nuavg and improves the heat transfer; besides the use of HBNF gives better Nuavg values. Three correlations of the effect of r, ϕ, Ri, and Re on Nuavg are determined for both hybrid and mono NFs.  相似文献   

9.
This paper presents an analytical model to the problem of thermal interaction between two forced convection layers of parallel flow on opposite wall sides. The problem is formulated in dimensionless terms to generalize the solution. The two convection layers are analyzed separately by employing the integral technique. The two analyses are then coupled by applying the solid–fluid interfacial conditions. The study indicates that the thermal interaction process is governed mainly by two dimensionless parameters relating the heat transfer effectiveness of two interactive convection modes and wall conduction. The effects of governing parameters on the flow and heat transfer characteristics of two coupled convection layers are documented. Results regarding mean conjugate Nusselt number are obtained for wide ranges of governing parameters.  相似文献   

10.
A heat transfer experiment on a wall with laminar flow was performed by using a wall jet. The wall jet was generated by a flow control plate placed near the wall. Heat transfer coefficients were measured by a Mach. Zehnder interferometer. Flow patterns and velocities were measured by a smoke-wire method and a laser Doppler velocimeter, respectively. The height of the plates was varied from 2 mm to 8mm. The clearances between the wall and plate were varied from O mm to 7.6 mm. The following results were obtained. The large plate height gave a large, local heat transfer coefficient. The local heat transfer coefficients were enhanced about 7 times as high as that without the place at h = 8 mm, 0 = 30 degrees, and c/(c + h) = 0.15. The optimum wall jet generator angle for large heat quantity was 30 degrees or 45 degrees. © 1997 Scripta Technica, Inc. Heat Trans Jpn Res. 25 (1): 1–11, 1996  相似文献   

11.
为了明确辐射侧加热封闭方腔内半透明流体的自然对流传热现象及规律,采用有限体积法进行数值模拟研究,分析了瑞利数和光学厚度对流场、温度场以及传热特性的影响。结果表明:与传统侧壁加热腔内自然对流相比,辐射侧加热腔内等温线和流场分布规律不一致;随着瑞利数和光学厚度增加,涡心由中心位置沿直线向辐射入射侧斜上方偏移;随着瑞利数增加,等温线变得更均匀;随着光学厚度增加,等温线变密,努塞尔数Nu与瑞利数RaT的标度律指数减小,当光学厚度增加到一定时标度律不再变化,此时传热标度律与传统恒壁温侧加热腔内自然对流相当,满足Nu~Ra0.29T。  相似文献   

12.
In this paper, the results of an experimental and theoretical investigation of combined heat transfer in a photovoltaic wall have been reported. The photovoltaic wall is a prototype, which is composed of two pieces of BP PV panels and a Styrofoam board, and part of the light of radiation energy from the indoor lamps can be converted into electricity. Through experiments, the performance of such a photovoltaic wall has been studied. For the convenience of the treatment of heat radiation, a model in terms of the integration of the absolute temperature has been proposed for the numerical simulation of the combined heat transfer in the test wall. By comparison, it is found that with regard to the thermal radiation of lamp surface, good agreement between the results of simulation and experimental data is obtained. © 2004 Wiley Periodicals, Inc. Heat Trans Asian Res, 33(2): 117–128, 2004; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10136  相似文献   

13.
In this study, a numerical simulation study of turbulent natural convection coupled with thermal radiation in a vertical cavity differentially heated and filled with air assumed as a transparent fluid was carried out. The cavity has a variable form factor which can reach large values. The vertical walls are subjected to constant temperatures (Tc and Tf), whereas the horizontal walls are assumed adiabatic. The flow inside the cavity is turbulent and turbulence was modeled by using the K ? ε model, and to take into account of the radiative transfer, the discrete ordinate model (DO) was introduced. To solve the different equations, Ansys‐Fluent software based on the finite volume method was used. Some numerical results obtained for the Rayleigh number value of 1011 have been validated by some existing results in the theory. It is found that the thermal radiation has a significant influence on the flow structure and temperature variation where the flow becomes reinforced. It accelerates the airflow inside the cavity and gives the formation of significant velocity and temperature gradients along the walls of the cavity. Taking into account of the surface, thermal radiation is essential in the correct evaluation of temperature in the cavity.  相似文献   

14.
殷亮 《热科学与技术》2007,6(3):219-223
对具有内热源方腔的稳态层流耦合自然对流换热进行了三维的数值模拟,采用的模拟代码基于连续介质计算力学的开源库OpenFoam,解决了自然对流换热与固体传热的耦合问题。对外壁面为常温、方腔内充满含体积热源流体的自然对流计算结果表明,温度场、速度场与非耦合的工况有很大差异。Ra的变化从10^5到10^9。  相似文献   

15.
The present work submits an experimental work on the heat transfer and friction loss characteristic, employing a tube finned heating surface kept at a constant temperature in a rectangular channel. The tube fins attached on the surface (o.d.=29 mm) were arranged as either in‐line or staggered. The parameters for the study were Reynolds number (3700–30 000), depending on hydraulic diameter, the distance between the tube fins in the flow direction (Sy/D=1.72–3.45) and the fin arrangement. The change in the Nusselt number with these parameters was determined. For both tube fin arrangements, it was observed that increasing Reynolds number increased Nusselt number, and maximum heat transfer occurred at Sy/D=2.59. Thermal performances for both arrangements were also determined and compared with respect to heat transfer from the same surface without fins. With staggered array, a heat transfer enhancement up to 25 per cent for Sy/D=3.45 in staggered array was achieved in constant pumping power. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
建立了球形腔式吸热器三维模型;以基于蒙特卡罗光线追迹法(MCRT)进行光学模拟得到的能流分布,作为吸热管壁的热边界条件;通过数值模拟研究球形吸热器的耦合传热问题;探讨吸热流体入口参数对热性能的影响。研究表明:吸热管壁的辐射能流密度分布不均匀;在相同条件下,下入口吸热器的热性能优于上入口吸热器;在吸热流体的入口速度为0.2~0.4 m/s,提高流速可明显增大吸热器热效率,入口速度大于0.6 m/s时,热效率的增大速率变得平缓;随入口温度升高,热效率几乎呈线性下降。基于非均匀热流边界条件下的吸热器三维数值模拟结果更符合实际情况,为吸热器的优化设计与推广应用提供依据和参考。  相似文献   

17.
A natural convection in a square cavity finds considerable interest in thermal engineering applications. However, the use of entropy generation concept enables to identify the optimum conditions for its practical application. Consequently, in the present study, natural convection in a square cavity with differential top and bottom wall temperatures is investigated. A numerical scheme using the control volume approach is introduced when discretizing the governing flow and energy equations. The study is extended to include the analysis of the entropy in the cavity. It is found that the local rise of temperature occurs at the right bottom of the cavity due to vertical circulation developed in the cavity. The entropy generation amplifies when circulation along the x-axis increases and, the entropy generation becomes minimum for a particular Rayleigh number. © 1998 John Wiley & Sons, Ltd.  相似文献   

18.
The energy demand in China is rapidly growing, the development and applications of low energy technologies for green buildings have been paid much concern. The hollow block ventilated wall is proposed in this paper. According to the characteristic of the hollow part from up to down, the supply air passes through the cavity of the block, and then discharges to the outside after the heat exchange with the concrete hollow block, the cooling and heating requirements of envelope caused by outdoor environment can be partially removed; the building cooling/heating load can be greatly reduced or even eliminated. The Frequency-Domain Finite Difference (FDFD) model is established and the thermal performance analysis of hollow wall is carried out by using FDFD method in frequency domain. A CFD model is developed to simulate the thermal characteristics of this structure for reference for validating the FDFD model. The results demonstrate that the predictions of the FDFD and CFD models agree very well, and the FDFD model can provide accurate prediction. When the frequency varies, the frequency response of the heat flux is not obvious in low frequency region and is significant in high frequency.  相似文献   

19.
A numerical study is performed to investigate the influence of geometrical factors on the performance characteristics of a laminar thermally developing flow of phase change nano-suspensions in a rectangular minichannel considering axial wall conduction effects. The phase change material dispersed in the pure water is considered N-eicosane with the onset point of melting of 34.7°C, latent heat of fusion of 243 J/g, and particle size of 200 nm. The volume fractions of the phase change nano-suspensions are 2% and 10%, and the Reynolds number is in the range of 200 to 1500. To evaluate the influences of geometrical parameters on the cooling performance of the minichannel heat sinks, five minichannels are investigated, with aspect ratios (ration between channel height and width) ARch of 1, 1.25, and 1.5 and bottom wall thicknesses Hbw of 0.5, 1, and 1.5. The results reveal that the axial wall conduction significantly affects the heat transfer process of a flow in a minichannel at a low Reynolds number, and this effect is more remarkable with a shallower channel and a thicker bottom wall. Five performance indicators are used to systematically evaluate the heat transfer characteristics of the minichannels, including dimensionless heat flux at the bottom wall, temperature suppression, heat transfer effective ratio, heat dissipation of the extended wall, and figure of merit.  相似文献   

20.
INTRODUCTIONNaturalconvectioninanellipticalcavityheatedfrombelowwastreatednumericallybyM..him.ull],usingaFourierspectralfinitedifferencemethod,anditseffectivenesswasshownasinRef.[2].AlsopossibilityoftheextensiontovarioustypesofboundaryconditionsforthespectralfinitedeferenceschemewasproposedinReL[2-3].HerethespectralfinitedifferenceschemeisbeingextendedtoadoptDimexpansions(akindofBesselexpansions).NUMERICALANAlySISBasicAssumptionsbleatedistransiellttwo--dimensionalnaturallaminarco…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号