首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The effects of processing condition variations in the retrogression and re-ageing (RRA) treatment of AA7150 have been investigated. The results reveal that the corrosion resistance and strength of RRA-treated samples are sensitive to the pre-ageing temperature and retrogression heating rate. With an intermediate pre-ageing temperature of 60 °C and a slow retrogression heating rate of 5 °C/min, RRA-treated samples can be tailored towards a good combination of both corrosion resistance and strength, owing to a smaller potential difference between grain-boundary precipitates and the matrix, and a larger volume fraction of strengthening precipitates in the matrix.  相似文献   

2.
Hardness tests and transmission electron microscopy were used to investigate the strategy of tailoring the phase fraction of precipitates in an Al-Zn-Mg-Cu alloy strengthened by T’ and η’ phases. Different phase fractions of T’ and η’ phases are presented in samples subjected to either single or two stages of ageing treatments at 120 and 150 °C. For both types of ageing, the precipitation of η’ phase is found to be promoted by ageing at lower temperature and its phase fraction increases with prolonging ageing time at 120 °C; whereas the phase fractions of T’ and η’ phases almost remain constant during ageing at 150 °C. Besides, the strain fields produced by T’ and η’ phases were analyzed by using the geometric phase analysis technique, and on a macroscale the contributions of T’ and η’ phases to precipitation strengthening have been quantitatively predicted by combining the size, phase fraction and number density of precipitates.  相似文献   

3.
Microstructure and mechanical properties of AA2024 after severe plastic deformation (SPD) and non-isothermal annealing were investigated. The non-isothermal treatment was carried out on the severely deformed AA2024, and the interaction between restoration and precipitation phenomena was investigated. Differential scanning calorimetry, hardness and shear punch tests illustrate that static recovery and dissolution of GPB zones/Cu–Mg co-clusters occur concurrently through non-isothermal annealing. Scanning electron microscope and electron backscatter diffraction illustrate that non-isothermal annealing of deformed AA2024 up to 250 °C promotes the particle-free regions and also particle stimulated nucleation. Results show that through heating with the rate of 10 °C/min up to 250 °C, the ultimate shear strength and the hardness are maximum due to the presence of S'/S phases which have been detected during non-isothermal differential scanning calorimetry experiment. Also, recrystallization phenomenon occurs in temperature range which includes the dissolution of S'/S phases. The concurrent recrystallization and dissolution of S'/S phase at 380 °C have been verified by differential scanning calorimetry, mechanical properties, and optical microscope.  相似文献   

4.
Thermal analysis is one of the most used techniques for analyzing the behavior of aluminum alloys in order to analyze the precipitation of Guinier?Preston (GP) zones and different phases formed. In the present work, the behavior of the Al?5.46wt.%Zn? 1.67wt.%Mg alloy was studied. The mechanism and kinetics of precipitation of the GP, the metastable phase η′ and the equilibrium phase η were investigated using DSC carried out between room temperature and 480 °C at heating rates of 5, 10, 15 and 20 °C/min. The apparent activation energies, calculated by DSC from isothermal calculation method using JMAK model, for GP, η′ and η were 56, 79 and 96 kJ/mol, respectively, and those calculated by non-isothermal calculation method using Kissinger methods were 57, 82 and 99 kJ/mol, respectively. The values of Avrami parameter, n, from isothermal calculation, during the precipitation of the GP, η′ and η were 1.103, 1.9075 and 1.92, respectively, and those calculated by non-isothermal were 0.86, 2.30 and 2.24, respectively. The results show that GP zones formation is governed by the migration of Zn and Mg atoms while the precipitation of the η′ metastable phase and the η stable phase is governed by both the migration and the diffusion of the solute atoms.  相似文献   

5.
This study investigated how powder preparation during WC-10Co production with the addition of 10 wt% Al2O3 influenced its microstructural and mechanical properties. Powders were mixed with a mechanical shaker for 10 min and high energy milling for 2, 6, 10, 20, 30, and 50 h. The powders were then compacted at 200 MPa and sintered in a resistive dilatometric furnace for one hour, under an argon atmosphere, at a heating rate of 10 °C / min, and two sintering temperatures (1400 °C and 1550 °C). XRD and SEM/EDS analyses were carried out for both powders, which were sintered in order to examine their composition and morphology. The sintered powders were also characterized in terms of mechanical properties, densification, and dilatometric shrinkage. The results show that samples milled for 50 h and sintered at 1550 °C exhibited microstructures with denser phases than those of samples mixed in the shaker. The properties measured were around 68%, 45%, −0.30, and 280 HV for relative density, densification, dilatometric shrinkage, and hardness, respectively.  相似文献   

6.
AA6063 was heat treated with different retrogression temperatures and durations, and the effect of heat treatment conditions on the microstructure, hardness, electrical conductivity, intergranular corrosion (IGC) and electrochemical corrosion behaviours of the AA6063 was determined compared with the T6 condition. The IGC test was applied according to the BS EN ISO 11846: 2008 standard. Moreover, potentiodynamic polarization tests were applied to determine the electrochemical corrosion behaviour of the heat‐treated samples. Electrochemical corrosion tests were carried out by using a Ivium Compactstat potentiostat in 3.5 wt.%. NaCl solution at 24°C with a scanning rate of 0.5 mV/s. The corrosion test cell consisted of the reference electrode (Ag/AgCl), working electrode (test sample) and a reference electrode (platinum). The effect of IGC on the microstructure of AA6063 and corrosion depth values was investigated by using a stereo optical microscope and a light metal microscope, respectively. Corrosion depth examinations were performed on microstructures taken from the cross‐sections of the samples. The chemistry of the precipitates formed at grain boundaries and distribution of the precipitates in the microstructure were investigated by scanning electron microscope, energy dispersive X‐ray and transmission electron microscope analyses. The results showed that retrogression and reaging heat treatment improves both the corrosion resistance and the mechanical properties of AA6063. After 50°C/15 min RRA heat treatment, the highest corrosion resistance and a higher hardness value than the T6 level were obtained.  相似文献   

7.
Recycled high-strength aluminum alloys have limited use as structural materials due to poor mechanical properties. Spray forming remelting followed by hot extrusion is a promising route for reprocessing 7xxx alloys. The 7050 alloy machining chips were spray formed, hot extruded, rotary swaged and heat-treated in order to improve mechanical properties. Microstructures, tensile properties and fatigue strength results for a 2.7 mm-diameter recycled wire are presented. Secondary phases and precipitates were investigated by XRD, SEM, EBSD, TEM and DSC. As-swaged and heat-treated (solution and aging) conditions were evaluated. Mechanical properties of both conditions outperformed AA7050 aerospace specification. Substantial grain refinement resulted from the extensive plastic deformation imposed by rotary swaging. Refined micrometric and sub-micrometric Al grains, as well as coarse and fine intermetallic precipitates were observed. Subsequent solution treatment resulted in a homogeneous, recrystallized and equiaxed microstructure with grain size of 9 μm. Nanoscale GP(I) zones and η′ phase precipitates formed after aging at 120 °C, imparting higher tensile (586 MPa) and fatigue (198 MPa) strengths.  相似文献   

8.
Effect of step-quenching on microstructure of aluminum alloy 7055   总被引:4,自引:0,他引:4  
The effect of step-quenching on the microstructure of aluminum alloy 7055 after artificial aging was studied by hardness testing and transmission electron microscopy (TEM). Step-quenching leads to decomposition of solid solution and heterogeneous precipitation of equilibrium phase mainly on dispersoids and at grain boundaries; thus lower hardness after aging. Prolonging isothermal holding at 415 ℃ results in coarser and more spaced η phase particles at grain boundaries with wider precipitates free zone, and lower density of larger η′ hardening precipitates inside grains after aging. Isothermal holding at 355 ℃ results in heterogeneous precipitation of η phase both on dispersoids and at grain boundaries. Isothermal holding at 235 ℃ results in heterogeneous precipitation of η phase first, and then S phase. Precipitates free zones are created around these coarse η and S phase particles after aging. Prolonging isothermal holding at these two temperatures leads to fewer η′ hardening precipitates inside grains, larger and more spaced η phase particles at grain boundaries and wider grain boundary precipitates free zone after aging.  相似文献   

9.
This study has been carried out by differential scanning calorimetry (DSC) to study the kinetics of precipitation and the dissolution of metastable and stable phases in Al-Mg-Si-(Cr,Be) alloys which were heat treated by T6, two-step aging and RRA (retrogression and reaging) treatment. The heat flow variations by phase transformation in the as-quenched specimen were calculated from DSC thermograms obtained from heating rates of 5, 10, 15 and 20°C/min. Four exothermic peaks may be attributed to the precipitation of G.P.I zone, G.P.II zone(β″), β′ and β (Mg2Si) phases, and three endothermic peaks may be attributed to the dissolution of G.P.I zone, β″ and the β′ phases, respectively. The kinetic equation (dY/dt)=f(Y)koexp(-Q*/RT) can be used to study the precipitation kinetics of Ai-Mg-Si-(Cr, Be) alloys, where Q*, ko, and f(Y)are the activation energy, frequency factors and the function of Y, respectively. The kinetic parameters measured from DSC curves can be used to interpret the transformation kinetics.The formation rate of β″ phase in the Al-Mg-Si alloy increased by the small addition of Be. This is because Be increases the nucleating rate of the β″ phase due to the decrease of the matrix/β″ interface energy. By the addition of Be or Cr and Be in Al-Mg-Si alloy, G.P. zone was easily decomposed during retrogression treatment at 225°C for 3 min. Therefore, maximum hardness can be obtained by RRA (150°C/20 min→225°C/3 min→ 180°C/3O min) in Al-0.8%Mg-1.0%Si-0.05% Be and Al-0.8% Mg-l.0% Si-0.l% Cr-0.05% Be alloys owing to the high density of β″ and β′ precipitates.  相似文献   

10.
Porous Ti-23%Nb (mole fraction) shape memory alloys (SMAs) were prepared successfully by microwave sintering with excellent outer finishing (without space holder). The effects of microwave-sintering on the microstructure, phase composition, phase-transformation temperature, mechanical properties and shape-memory effect were investigated. The results show that the density and size of porosity vary based on the sintering time and temperature, in which the smallest size and the most uniform pore shape are exhibited with Ti-23%Nb SMA after being sintered at 900 °C for 30 min. The microstructure of porous Ti-Nb SMA consists of predominant α″, α, and β phases in needle-like and plate-like morphologies, and their volume fractions vary based on the sintering time and temperature. The β phase represents the largest phase due to the higher content of β stabilizer element with little intensities of α and α″ phases. The highest ultimate strength and its strain are indicated for the sample sintered at 900 °C for 30 min, while the best superelasticity is for the sample sintered at 1200 °C for 30 min. The low-elastic modulus enables these alloys to avoid the problem of “stress shielding”. Therefore, microwave heating can be employed to sinter Ti-alloys for biomedical applications and improve the mechanical properties of these alloys.  相似文献   

11.
The evolution and distribution of the aging precipitates in 1460 Al-Li alloy with high Li concentration (2.14%, mass fraction) during T6 aging and two-step T8 (4% predeformation) aging were investigated through TEM. The aging precipitates include δ′ (Al3Li) and T1 (Al2CuLi) phases, of which the δ′ phases are formed first in grain interiors. A lot of δ′/GPI/δ′ composite precipitates in which GPI zones are flanked with a pair of δ′ phases, are formed at 145 °C of T6 aging, which are thermally stable. At 160 °C and 175 °C of T6 aging, many T1 phases nucleate first at subgrain boundaries and grain boundaries, and then form and grow within grains. As to the T8 aging, the δ′/GPI/δ′ composite precipitates are formed during the first-step aging at 130 °C for 20 h, which are thermally stable during the second-step aging at 160 °C. The plastic predeformation accelerates T1 nucleation within grains during the second-step aging at 160 °C.  相似文献   

12.
TiB2–TiC composite ceramic cutting tool material was prepared by sintering during hot-pressing in vacuum. The effects of nano-scale Ni and Mo additives and sintering heating rate on mechanical properties and grain characteristics were investigated. TiB2 and TiC grains exhibited prismatic and equiaxed shapes respectively. The diameter and aspect ratio of prismatic TiB2 grains were influenced by nano-scale Ni/Mo additives. A higher heating rate could cause a higher aspect ratio of prismatic TiB2 grains. The good mechanical properties of TN1((TiB2–TiC)/Ni composite ceramic sintered at a heating rate of 50 °C/min) were ascribed to a relatively fine and homogenous microstructure. And a brittle B4MoTi solid solution phase and wider distribution of grain size induced the lower flexural strength of TNM2((TiB2–TiC)/(Ni,Mo) composite ceramic sintered at heating rate of 100 °C/min), but the higher aspect ratio of TiB2 grains could prevent cracks from propagating and ameliorated the fracture toughness. The optimum resultant mechanical properties were obtained by (TiB2–TiC)/Ni composite ceramic sintered at a heating rate of 50 °C/min.  相似文献   

13.
通过透射电镜分析、拉伸性能和电导率测试,研究回归再时效处理(RRA)工艺对含Sc超高强Al-Zn-Mg-Cu-Zr合金组织与性能的影响。结果表明:120 ℃,24 h预时效+180 ℃, 30 min回归+120 ℃, 24 h终时效的RRA处理,可以使合金保持接近T6态的强度和较高的电导率;晶内析出组织与T6态合金组织类似,而晶界析出相聚集、粗化,与双级过时效组织相似。  相似文献   

14.
In this study, aluminum alloy Al-5Fe-V-Si (in wt.%) feedstock powder, produced by rapid solidification (RS) using the gas atomization process, was selected to produce high-temperature resistant Al-alloy coatings using the cold gas dynamic spraying process (CGDS). The alloy composition was chosen for its mechanical properties at elevated temperature for potential applications in internal-combustion (IC) engines. The CGDS spray process was selected due to its relatively low operating temperature, thus preventing significant heating of the particles during spraying and as such allowing the original phases of the feedstock powder to be preserved within the coatings. The microstructure and phases stability was investigated by means of Scanning Electron Microscopy, transmission electron microscopy, X-ray diffraction and differential scanning calorimetery techniques. The coatings mechanical properties were evaluated through bond strength and microhardness testing. The study revealed the conservation of the complex microstructure of the rapid solidified powder during the spray process. Four distinct microstructures were observed as well as two different phases, namely a Al13(Fe,V)3Si silicide phase and a metastable (Al,Si) x (Fe,V) Micro-quasicrystalline Icosahedral (MI) phase. Aging of the coating samples was performed and confirmed that the phase transformation of the metastable phases and coarsening of the nanosized precipitates will occurs at around 400 °C. The metastable MI phase was determined to be thermally stable up to 390 °C, after which a phase transformation to silicide starts to occur.  相似文献   

15.
Transmission electron microscopy (TEM), scanning electron microscopy (SEM), hardness tests and tensile tests were performed to investigate the effect of aging on microstructure and mechanical properties of forged Al-4.4Cu-0.7Mg-0.6Si alloy. The results show that the alloy exhibits splendid mechanical properties with an ultimate tensile strength of 504 MPa and an elongation of 10.1% after aging at 170 °C for 16 h. With tensile testing temperature increasing to 150 °C, the strength of the alloy declines slightly to 483 MPa. Then, the strength drops quickly when temperature reaches over 200 °C. The high strength of the alloy in peak-aged condition is caused by a considerable amount of θ′ and AlMgSiCu (Q) precipitates. The relatively stable mechanical properties tested below 150 °C are mainly ascribed to the stability of θ′ precipitates. The growth of θ′ and Q precipitates and the generation of θ phase lead to a rapid drop of the strength when temperature is over 150 °C.  相似文献   

16.
The effect of ageing at 300°C before and after quenched at two temperatures of 180 and 280°C on the Al 2017 alloy was studied. The structural properties were investigated using X-ray diffraction; the microstructural evolution was investigated using scanning electron microscopy and microhardness measurement for the mechanical properties. After various states of ageing, the Al–Cu–Fe alloy shows significant changes in the microstructure and mechanical behavior. After ageing, the microstructure of the matrix consisted of a three solid solution of α-Al–Cu-Fe, β-AlFe and θ-A2Cu phases precipitations. After two-step heat treatment (quenching and ageing), the alloy reveals the formation of β and θ phases precipitates. After ageing at 300°C of original sample, the alloy reveals higher β precipitates, corresponding to the minimum value of microhardness, the volume fraction of this precipitates becomes higher. On the other hand, the TTT curves for the discontinuous and continuous precipitation reaction in this alloy have been suggested.  相似文献   

17.
Because of their austenitic-ferritic microstructures, duplex stainless steels offer a good combination of mechanical and corrosion resistance properties. However, heat treatments can lower the mechanical strength of these stainless steels as well as render them susceptible to intergranular corrosion (IGC) and pitting corrosion. In this study, a low-carbon (0.02%) duplex stainless steel is subjected to various heat treatments at 450 to 950 °C for 30 min to 10 h. The heat-treated samples then undergo ASTM IGC and pitting corrosion tests, and the results are correlated with the microstructures obtained after each heat treatment. In the absence of Cr23C6 precipitation, σ-phase precipitates render this duplex stainless steel susceptible to IGC and pitting corrosion. Even submicroscopic σ-phase precipitates are deleterious for IGC resistance. Longer-duration heat treatments (at 750 to 850 °C) induce chromium diffusion to replenish the chromium-depleted regions around the σ-phase precipitates and improve IGC resistance; pitting resistance, however, is not fully restored. Various mechanisms of σ-phase formation are discussed to show that regions adjacent to σ-phase are depleted of chromium and molybdenum. The effect of chemical composition (pitting resistance equivalent) on the pitting resistance of various stainless steels is also noted.  相似文献   

18.
Ti(C0.6,N0.4)-8Mo-xWC-25Ni (x = 0, 3, 6 and 9 wt%) cermets were synthesized under different cooling rates by vacuum sintering. The influence of WC addition and cooling rate on microstructure, magnetic and mechanical properties of the as-prepared Ti(C,N)-based cermets was investigated by using X-ray diffraction (XRD), scanning electron microscopy (SEM), vibrating sample magnetometer (VSM) and physical property measurement system (PPMS). The results revealed that the grain size of the Ti(C,N)-based cermets became finer with WC addition. Furthermore, room-temperature saturation magnetization (Ms), remanence (Mr) and Curie temperature (Tc) of the Ti(C,N)-based cermets initially decreased with increasing WC content, followed by a gradual increase. Cermets bacame paramagnetic at x = 6 under the cooling rate of 2 °C/min, x = 6 and 9 under the cooling rate 35 °C/min, respectively. The decrease in magnetic properties could be ascribed to the enhanced solid solubility of alloy elements in Ni-based binder phase. Moreover, the hardness and transverse rupture strength (TRS) of the Ti(C,N)-based cermets initially increased and followed by a gradual decrease, whereas the fracture toughness initially decreased followed by an increase with increasing WC content. At the same value of x, the Ti(C,N)-based cermets exhibited better magnetic and mechanical properties at the cooling rate of 35 °C/min than that at the cooling rate of 2 °C/min, which could be attributed to the grain refinement strengthening and solid-solution strengthening of the binder phase.  相似文献   

19.
The retrogression kinetics for grain boundary precipitate (GBP) of 7A55 aluminum alloy was investigated by transmission electron microscopy (TEM) observation. The results reveal that the coarsening behavior of GBP obeys “LSW” theory, namely, the cube of GBP average size has a linear dependence relation to retrogression time, and the coarsening rate accelerates at the elevated retrogression temperature. The GBP coarsening activation energy Qd of (115.2±1.3) kJ/mol is obtained subsequently. Taking the retrogression treatment schedule of 190 °C, 45 min derived from AA7055 thin plate as reference, the non-isothermal retrogression model for GBP coarsening behavior is established based on “LSW” theory and “iso-kinetics” solution, which includes an Arrhenius form equation. After that, the average size of GBP r(t) is predicted successfully at any non-isothermal process T(t) when the initial size of GBP r0 is given. Finally, the universal characterization method for the microstructure homogeneity along the thickness direction of 7A55 aluminum alloy thick plate is also set up.  相似文献   

20.
The effects of joining temperature (TJ) and time (tJ) on microstructure of the transient liquid phase (TLP) bonding of GTD-111 superalloy were investigated. The bonding process was applied using BNi-3 filler at temperatures of 1080, 1120, and 1160 °C for isothermal solidification time of 195, 135, and 90 min, respectively. Homogenization heat treatment was also applied to all of the joints. The results show that intermetallic and eutectic compounds such as Ni-rich borides, Ni−B−Si ternary compound and eutectic-γ continuously are formed in the joint region during cooling. By increasing tJ, intermetallic phases are firstly reduced and eventually eliminated and isothermal solidification is completed as well. With the increase of the holding time at all of the three bonding temperatures, the thickness of the athermally solidified zone (ASZ) and the volume fraction of precipitates in the bonding area decrease and the width of the diffusion affected zone (DAZ) increases. Similar results are also obtained by increasing TJ from 1080 to 1160 °C at tJ=90 min. Furthermore, increasing the TJ from 1080 to 1160 °C leads to the faster elimination of intermetallic phases from the ASZ. However, these phases are again observed in the joint region at 1180 °C. It is observed that by increasing the bonding temperature, the bonding width and the rate of dissolution of the base metal increase. Based on these results, increasing the homogenization time from 180 to 300 min leads to the elimination of boride precipitates in the DAZ and a high uniformity of the concentration of alloying elements in the joint region and the base metal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号