首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Austenitic Fe-18Cr-20Ni-1.5Mn alloys containing 0, 0.6, and 1.5 wt.% Si were produced both by conventional and rapid solidification processing. The cyclic oxidation resistance of these alloys was studied at 900°C in a SO 2-O 2 gas mixture to elucidate the role of alloy microstructure and Si content on oxidation properties in bioxidant atmospheres. All the large-grained, conventionally processed alloys exhibited breakaway oxidation during cyclic oxidation due to their poor rehealing characteristics. The rapidly solidified, fine-grained alloys that contained less than 1.5 wt.% Si exhibited very protective oxidation behavior. There was considerable evidence of sulfur penetration through the protective chromia scale. The rapidly solidified alloys that contained 1.5 wt.% Si underwent repeated scale spallation that led to breakaway oxidation behavior. The scale spallation was attributed to the formation of an extensive silica sublayer in the presence of sulfur in the atmosphere.  相似文献   

2.
The oxidation behavior of two ductile cast irons was investigated in synthetic diesel and gasoline exhaust gases. The alloys were a SiMo (Fe3.86Si0.6Mo3C) and a Ni-Resist (Fe32Ni5.3Si2.1C). Polished sections were exposed at temperatures between 650 and 1,050 °C, mostly for 50 h. The oxidation product was characterized by means of SEM/EDX, AES, XPS and XRD. Iron oxides nodules formed above a continuous layer of Fe–Si-oxide for SiMo. The alloy failed in forming a continuous silica layer at low temperatures. At 850 °C and above silica was formed, but austenite formation enhanced the decarburization. Escaping CO/CO2 increased the oxide porosity, and consequently the oxidation rate. The oxidation resistance of Ni-Resist was dependent on Cr assisting the formation of SiO2. However, this effect was restrained to cell boundaries in particular when water enhanced the Cr evaporation or the diffusion was slow at low temperatures. Then, the rapid oxidation left metallic Ni particles in the inner oxide.  相似文献   

3.
The oxidation of a Cu-Cr alloy containing about 60 wt% Cr and of two Cu-Cr alloys containing about 40 wt% Cr was studied at 700 and 800 °C in 1 atm O2. The 60 wt% Cr alloy was prepared by powder metallurgy (PM) and had a phase particle size of 50-150 μm. One of the two alloys containing about 40 wt% Cr was prepared by mechanical alloying (MA) and had a phase grain size ranging from 10-50 nm to 200-300 nm, depending on the location, while the other was prepared by magnetron sputtering (MS) and had a phase grain size around 5-10 nm. The most important difference between the oxidation behavior of the three alloys is the formation of an exclusive chromia scale on the surface of the Cu-40 wt% Cr alloy prepared by magnetron sputtering and of a continuous chromia layer beneath an outermost layer of copper oxides on the corresponding alloy prepared by mechanical alloying, while the Cu-60 wt% Cr alloy prepared by powder metallurgy formed complex scales composed mostly of CuO, Cu2O with some Cu2Cr2O4 and Cr2O3. Thus, the microstructure of two-phase binary alloys has a strong effect of their oxidation behavior. In particular, a decrease of the alloy grain size favors the exclusive external oxidation of the most reactive component, reducing the corresponding critical content in the alloy. This effect is attributed to the presence of larger concentrations of rapid diffusion paths for the migration of the components in the alloy as well as to a faster dissolution of the particles of the Cr-rich phase in the copper matrix.  相似文献   

4.
The oxidation of Ni-2.05Si and Ni-4.45Si was studied in oxygen over the range of 600°–1000°C for 18 hr. The oxidation kinetics did not follow a parabolic rate law, bur rather a power law of the form (w)n=kt was followed. The value of n ranged from 2.7 to 4.9 for Ni-2.05Si and from 3.0 to 6.4 for Ni-4.45Si. The low-silicon alloy exhibited extensive internal oxidation, whereas the higher-silicon alloy did not internally oxidize. In general, NiO containing little or no silicon formed as an exterior layer on both alloys. The internal oxidation zone in Ni-2.05Si was highly irregular in thickness, and in some areas there was no internal oxidation. The higher-silicon alloy formed a continuous layer of a silicon-rich oxide. X-ray diffraction did not detect silica (amorphous), and no evidence of Ni2SiO4 was observed, although EDAX analysis suggests that small amounts of the silicate might have formed. Theaverage thickness of the internal oxidation zone was found to agree well with calculated values based on oxygen solubility and diffusivity data. No enrichment of silicon occurred in the internal oxidation zone. Calculated values, 0.033 and 0.038 (depending on the model used), of the mole fraction of silicon required for the transition from internal oxidation to continuous silica film formation agreed well with experimental data obtained in both this study and with others reported in the literature.  相似文献   

5.
The oxidation behavior of thin layers of two Cu-Fe alloys containing 25 and 50 wt.% Fe, respectively, prepared by magnetron sputtering deposition on cast alloys of the same composition (Cu-Fe coatings) and presenting grain sizes in the nanometer range, was studied at 600-800 °C in air to examine the influence of the reduction in the grain size on the selective oxidation of the most reactive component in two-phase binary systems. A continuous Fe3O4 layer formed beneath an external region of copper oxide on the Cu-25Fe coating, whereas an external iron oxide scale mostly composed of Fe3O4 free from copper oxides formed on the Fe-50Cu coating. In both cases, an iron-depleted region was present in a subsurface alloy layer. These results differ remarkably from the oxidation behavior of cast Cu-Fe alloys of similar composition but with a large grain size, which formed mixed external scales of iron and copper oxides in air and simultaneous internal and external oxidation of Fe under both high and low oxygen pressures. Therefore, a grain size reduction can effectively promote the selective external oxidation of the more reactive component in binary two-phase alloys due to an increase in the mutual solubility of the two components associated with the method of alloy preparation as well as to the presence of a large density of grain boundaries in the coatings which may act as short-circuit diffusion paths, allowing a faster outward diffusion of iron during oxidation.  相似文献   

6.
Two nanocystalline two-phase Ag–Cr alloys prepared by mechanical alloying and containing approximately 30 and 50 wt.% Cr were oxidized in 1 atm O2 at 700 and 800°C. Under all conditions, a continuous layer of chromia formed at the surface of the alloys, in spite of the very low solubility of Cr in Ag. A layer of AgCrO2 also formed externally to the chromia layer. In the case of the Ag–30Cr alloy, some Ag particles were also present on the scale, directly in contact with the gas phase. Moreover, Cr particles dissolved in the subsurface region of the alloy, while internal oxidation of Cr was absent. Ag–Cr alloys prepared by powder metallurgy with coarse grain sizes were able to form an irregular thin chromia layer only at a Cr content of 69 wt.%, while an alloy containing 35 wt.% Cr corroded much more rapidly than the nanocrystalline Ag–30Cr alloy. This difference in the scaling behavior is attributed to the large reduction in the alloy grain size, which favors the dissolution of the Cr-rich particles in a Cr-depleted silver matrix and thus provides a faster supply of chromium from the alloy to the scale.  相似文献   

7.
Mo–Si–B alloys are promising candidates for structural high-temperature applications due to their excellent high-temperature mechanical properties along with high melting temperatures and oxidation resistance. After an initial period with high weight loss rates as a consequence of the volatilization of Mo-oxide, a protective borosilica (glass) layer develops on the alloy surface and steady-state oxidation is achieved. Aiming at improved mechanical properties of Mo–Si–B alloys which exhibit a continuous Mo solid solution matrix as a consequence of a powder metallurgical production route, small amounts of Zr were added. The presence of oxygen in the alloy leads to the formation of thermodynamically very stable Zr-oxide precipitates in the bulk alloy causing an enhancement of its mechanical properties. It was observed that the addition of Zr (distributed in the alloy matrix) also has significant influence on the oxidation behaviour of Mo–Si–B alloys by reducing the period for the formation of the protective and stable silica scale. Furthermore, the weight loss due to vaporization of Mo-oxides is consequently reduced. Besides this beneficial effect, Zr is harmful for the oxidation resistance at temperatures beyond 1,200 °C. This is mainly due to the increased oxygen transport through defects in the silica scale.  相似文献   

8.
B. Li  B. Gleeson 《Oxidation of Metals》2006,65(1-2):101-122
This paper compares and analyzes the oxidation behavior of Ni-base alloys with and without about 2.7 wt.% Si addition. The Ni-base alloys studied were of two types: cast model alloys or wrought commercial alloys. Oxidation testing was conducted at 1000°C in still air. The specific aspects studied were scale spallation resistance, nature by which the silicon oxidized, and the influence of silicon on the subsurface depletion behavior of chromium. From oxidation results of the cast model alloys, Si addition was found to improve oxidation resistance by forming a continuous SiO2 layer at the alloy/scale interface, which resulted in decreased oxidation kinetics. The cast alloys with Si addition also showed larger average effective interdiffusion coefficients of chromium compared to the cast alloys without Si addition. As a consequence, the Si addition assisted in the establishment and re-formation of a chromia scale during oxidation. In the case of the wrought commercial alloys, a discontinuous distribution of SiO2 precipitates in the vicinity of the alloy/scale interface was found to be beneficial to cyclic oxidation resistance.  相似文献   

9.
Fe–Ni–Cr alloys containing different contents of Si with and without pre-formed oxide scale at the surface were tested in oxidation environments at 1,050?°C with varied sulfur partial pressures. The oxide-scale growth on Fe–Ni–Cr alloys was accelerated by increasing sulfur partial pressures in the oxidizing-carburizing environments. This accelerated oxidation was characterized by the formation of plate-shaped MnCr2O4 spinel crystallites and the nodular clusters at the site of scale spallation. Pre-oxidized Fe–Ni–Cr alloys generally did not suffer from sulfur attack because of excellent protection of pre-formed oxide scale. Scale spallation and sulfur attack were found only on high-Si alloy subjected to the maximum sulfur potential, which was attributed to accelerated oxidation and selective oxidation and sulfidation at the sites where oxide scale spallation had occurred. For bare alloys in absence of pre-formed oxide layers, scale spallation was found to occur at lower level of sulfur potential on low-Si alloy than on high-Si alloy. A higher content of Si is necessary for the formation of protective silica sub-layer, which is believed to be the main cause of the difference in scale spallation observed.  相似文献   

10.
Oxidation of Ni-Cr-W ternary alloys   总被引:1,自引:0,他引:1  
  相似文献   

11.
The oxidation behavior of Ni–Cr–Fe-based alloys in a low oxygen partial pressure atmosphere (H2–H2O) was investigated in terms of the effect of alloy microstructure and their silicon content. It was found that the formation and growth kinetics of the oxide scale are rather sensitive to the alloy microstructure and their corresponding Si contents. Oxide ridges were found to form in areas with eutectic structure, while a thin and homogeneous oxide scale formed on austenite matrix. The thicknesses of the oxide ridges and the oxide layer on the austenite matrix were dependent of their corresponding Si contents. The austenite/carbide phase boundaries in eutectic structure can offer fast diffusion paths for metal outward diffusion, which leads to the formation of ridge-like oxide features. The continuous SiO2 sub-layer formed at the oxide scale/metal interface on the austenitic matrix acted as an effective diffusion barrier to metal outward diffusion, resulting in rather thin and uniform oxide scales.  相似文献   

12.
In order to determine the effect of alloy grain size on the oxidation properties of silica-coated austenitic Fe-18Cr-20Ni stainless steel, both coarse-grain (100-m grain size) and fine-grain (5-m grain size) forms of the alloy were produced. A 1-m-thick vitreous silica coating was deposited by chemicalvapor deposition on the alloys, which were subjected to isothermal and cyclic oxidation in air at 900°C. The coarse-grain alloys underwent widespread oxidation below the silica coating, leading to extensive coating spallation. This was attributed to the inability of the alloy to supply a sufficient outward flux of chromium to prevent oxygen penetration through microcracks in the silica coating. Due to an abundance of chromium available at the surface of the finegrain alloy, chromia formed in the microcracks within the silica layer. As a result, the silica-coated, fine-grain alloy demonstrated superior oxidation resistance and excellent adhesion of the coating.  相似文献   

13.
The Cu-Ni-Si alloy is known as a precipitation hardening alloy, where the Ni2Si intermetallic compound is precipitated in the matrix during aging. There are two types of precipitation of Ni2Si: continuous and discontinuous cellular. The discontinuous cellular precipitation is generally initiated at interfaces especially grain boundaries in the matrix. To observe the grain boundary effect on the discontinuous precipitation, a large-grained Cu-Ni-Si-Ti alloy was intentionally fabricated by unidirectional solidification and plastically deformed by groove rolling. While discontinuous cellular precipitation has been generally known to occur only at the high angled grain boundaries in the alloys, we found that it was also generated inside the grains, at the deformation bands formed by plastic deformation.  相似文献   

14.
The oxidation behavior of a binary Ni–6Al alloy and of three ternary Ni–xSi–6Al alloys containing 2, 4 and 6 at.% Si has been studied at 900°C under 1 atm of pure O2. The addition of 2 at.% Si to Ni–6Al increases the short-time oxidation rate of Ni–6Al, which is subsequently reduced and becomes similar to that of the binary alloy. However, the presence of this silicon level is already able to stop after some time the coupled internal oxidation of Al+Si by forming a healing oxide layer rich of alumina at the front of internal oxidation. The addition of 4 at.% Si to the same alloy permits a more rapid inhibition of the internal oxidation and the formation of a steady-state, inner alumina-rich scale. Finally, the addition of 6 at.% Si prevents the internal oxidation completely and leads to an earlier growth of a protective oxide layer in contact with the alloy as well as to a further reduction in the scaling rate. The role of Si in promoting the formation of protective scales in comparison with the binary alloy is examined on the basis of an extension to ternary alloys of a criterion proposed by Wagner for the transition between the internal and external oxidation of the most reactive component in binary alloys.  相似文献   

15.
It is essential for materials used at high‐temperatures in corrosive atmosphere to maintain their specific properties, such as good creep resistance, long fatigue life and sufficient high‐temperature corrosion resistance. Usually, the corrosion resistance results from the formation of a protective scale with very low porosity, good adherence, high mechanical and thermodynamic stability and slow growth rate. Standard engineering materials in power generation technology are low‐Cr steels. However, steels with higher Cr content, e.g., austenitic steels, or Ni‐base alloys are used for components applied to more severe service conditions, e.g., more aggressive atmospheres and higher temperatures. Three categories of alloys were investigated in this study. These materials were oxidised in laboratory air at temperatures of 550°C in the case of low‐alloy steels, 750°C in the case of an austenitic steel (TP347) and up to 1000°C in the case of the Ni‐base superalloys Inconel 625 Si and Inconel 718. Emphasis was put on the role of grain size on the internal and external oxidation processes. For this purpose various grain sizes were established by means of recrystallization heat treatment. In the case of low‐Cr steels, thermogravimetric measurements revealed a substantially higher mass gain for steels with smaller grain sizes. This observation was attributed to the role of alloy grain boundaries as short‐circuit diffusion paths for inward oxygen transport. For the austenitic steel, the situation is the other way round. The scale formed on specimens with smaller grain size consists mainly of Cr2O3 with some FeCr2O4 at localized sites, while for specimens with larger grain size a non‐protective Fe oxide scale is formed. This finding supports the idea that substrate grain boundaries accelerate the chromium supply to the oxide/alloy phase interface. Finally, in the Ni‐base superalloys deep intergranular oxidation attack was observed, taking place preferentially along random high‐angle grain boundaries.  相似文献   

16.
The oxidation behavior of Co-17Re-xCr-2Si alloys containing 23, 25, 27 and 30 at.% chromium at 1,000 and 1,100 °C were investigated. Alloy Co–17Re–23Cr–2Si showed a poor oxidation resistance during exposure to laboratory air forming a two-layer external scale and a very thin discontinuous Cr2O3 layer at the oxide/substrate interface. The outer layer of the oxide scale consisted of CoO, whereas the inner layer was a porous mixture of CoCr2O4 spinel particles in a CoO matrix. The oxide scale was found to be non-protective in nature as the vaporization of Re-oxide took place during oxidation. An increase of chromium content from 23 at.% to 25 at.% improved significantly the alloy oxidation resistance; a compact protective Cr2O3-scale formed and prevented the rhenium oxide evaporation. The oxidation behavior of alloys containing 27 at.% and 30 at.% chromium were quite similar to that of Co–17Re–25Cr–2Si. The oxidation mechanism for Co–17Re–25Cr–2Si alloy was established and the subsurface microstructural changes were investigated by means of EBSD characterization.  相似文献   

17.
The effect of Si and Y2O3 additions on the oxidation behavior of Ni–xAl (x = 5 or 10 wt%) alloys at 1150 °C was studied. The addition of Y2O3 accelerates oxidation rate of alloys, especially growth rate of NiO, but improves adherence of the scale to the substrate. The addition of Si facilitates the selective oxidation of Al, suppresses the formation of NiO and therefore reduces the critical Al content to form continuous layer of alumina scale. Higher Al content decreases the oxidation rate of alloys in binary Ni–Al alloys and increases the oxidation rate of alloys in ternary Ni–Al–Si alloys. The effect of third-element Si is more significant and beneficial than that of Al content in ternary Ni–Al–Si alloys.  相似文献   

18.
This study shows the influence of sodium carbonate coatings on the austenitic AISI 330 (Fe–35Ni–19Cr–1.3Si) oxidized during 48 hr at 900°C. The N2‐5 vol% H2 gaseous environment was used to simulate industrial heat treatment conditions. Silica scale formation is promoted by low oxygen‐containing gaseous environments and the high alloy silicon content. On this alloy, an amorphous silica scale is formed after the blank material oxidation. It indicates that silicon is free to diffuse in the alloy and forms a silica scale at the internal interface. On Na2CO3‐coated specimens, no silica scale is formed. Then, sodium combines with silicon to form amorphous glass particles. A comparison has been performed with results obtained on a AISI 330Cb niobium containing alloy in the same oxidizing conditions. It is then concluded that sodium carbonate coatings could only favor silica formation on niobium containing alloy due to a reaction between sodium and niobium.  相似文献   

19.
采用常规凝固技术制备了MgZn6xYx(x=0.7,1.0,1.5,2.0)合金,研究了Y含量对含有二十面体准晶相(I相)MgZn6xYx合金组织和性能的影响。结果表明,MgZn6xYx合金由α-Mg基体和分布在晶界周围的(α-Mg+I相)共晶组织组成。随着Y含量增加,基体晶粒尺寸减小,共晶组织尺寸增大,含量增加,由不连续分布转变为连续分布。在凝固过程中,二十面体准晶相通过共晶转变形成。Mg89.5Zn9.0Y1.5合金的抗拉强度和伸长率达到最大值,分别为179.2MPa和3.5%。MgZn6xYx合金的断口呈现准解理断裂特征。  相似文献   

20.
晶粒尺寸对Cu-60Ni合金高温氧化行为的影响   总被引:3,自引:0,他引:3  
研究了铸态Cu-60at%Ni(CACu-60Ni)和机械合金化制 备的纳米晶Cu-60at%Ni(MACu-60Ni)合金在800℃空气中的氧化行为.结果表明:CACu-60Ni 合金的氧化动力学偏离抛物线规律,形成外层为CuO,内层为疏松、多孔的Cu2O和NiO混合 氧化物层,同时沿合金基体发生了Ni的内氧化;MACu-60Ni合金的氧化动力学近似遵循抛物 线规律,合金表面氧化膜外层为很薄一层CuO,内层为较厚,且均匀致密的NiO层.晶粒细化 明显促进了由Cu2O和NiO混合氧化膜向单一连续NiO膜的转变.讨论了合金的氧化机制.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号