首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用熔体快淬及晶化退火工艺制备了纳米双相(Nd,Pr)2Fe14B/α-Fe型磁体,研究了Nb和Zr的添加对磁体磁性能、微观结构和晶化行为的影响。结果表明:添加Nb和Zr可提高α—Fe相的晶化温度,抑制α—Fe的析出和长大,避免亚稳相的形成,从而提高硬磁相的体积百分比。Nb和Zr复合添加能细化晶粒,增强硬磁相和软磁相问的交换耦合作用,显著提高纳米晶双相永磁合金的磁性能。合金(Nd,Pr)2Fe14B/α-Fe经过最佳热处理后,磁性能达到Br=1.10T,iHc=534.2kA/m,(BH)max=143.6kJ/m^3。  相似文献   

2.
纳米双相Nd2Fe14B/α-Fe磁体的微结构和交换耦合作用   总被引:2,自引:1,他引:2  
用熔体快淬法制备了高性能纳米双相耦合Nd2 Fe14 B/α Fe磁体 ,研究了快淬速率对其微结构和交换耦合作用的影响。实验结果表明 ,控制快淬速率在 12m/s时 ,可直接得到显微组织均匀 ,α Fe相粒子细小且均匀分布的纳米双相耦合Nd2 Fe14 B/α Fe磁体。低温退火消除由快速凝固带来的成分不均匀性后 ,强烈的铁磁交换耦合作用导致其最高磁性能为 :iHc=432 .2kA/m ,Jr=1.0 8T ,(BH) max=115kJ/m3 。快淬速率提高 ,非晶相体积分数增加 ,在高温晶化热处理时软硬磁相析出不均匀 ,个别α Fe相粒子奇异长大 ,尺寸达到 10 0nm左右 ,这不利于软硬磁相间的交换耦合作用 ,有损磁性能。  相似文献   

3.
热处理对Nd2Fe14B/α-Fe纳米复相磁体性能的影响   总被引:1,自引:0,他引:1  
为改善纳米复合永磁合金的磁性能,用熔体快淬和晶化热处理的方法制备了纳米复相Nd2Fe14B/α-Fe永磁体,研究了热处理工艺对Nd8Fe77B6Co8Nb1纳米晶复合磁体磁性能的影响.结果表明,热处理温度和时间明显影响纳米晶的形成及其磁性能.该纳米复合磁体在700℃×7min进行热处理时,可获得较好的磁性能,其矫顽力Hci=692kA/m,剩余磁感应强度Br=0.50T,最大磁能积(BH)max=51kJ/m3.  相似文献   

4.
采用熔体快淬法制备了成分为(Nd0.4Pr0.6)9Fe76B15和(Nd0.4Pr0.6)9Fe72Ti4B15-yCy(y=0-4)的合金薄带,研究了Ti和C含量对快淬带非晶形成、晶化过程及磁性能的影响。结果表明:Ti和C的添加极大地促进了快淬带的非晶形成能力。随C含量增加,非晶形成能力增强,当y=4时,只需要7m/s辊速就可以得到完全非晶,最佳热处理后磁性能达到:Br=0.88T,Hci=618kA/m,(BH)max=109.8kJ/m3。研究还表明,添加Ti元素可以避免(Nd0.4Pr0.6)9Fe76B15非晶晶化过程中(Nd,Pr)2Fe23B3亚稳相和(Nd,Pr)1.1Fe4B4相的生成,从而大大提高矫顽力。(Nd0.4Pr0.6)9Fe76B15合金的晶化过程为:Amorphous phase(A)→(Nd,Pr)2Fe23B3→(Nd,Pr)2Fe14B+α-Fe→(Nd,Pr)2Fe14B+(Nd,Pr)1.1Fe4B4+α-Fe。而(Nd0.4Pr0.6)9Fe72Ti4B15合金的晶化过程为:Amorhous phase(A)→α-Fe+A′→(Nd,Pr)2Fe14B+α-Fe+Fe3B。  相似文献   

5.
在Nd_2Fe_(14)B合金中添加具有调幅分解能力的Alnico合金,采用熔体快淬法在40m/s的快淬速度下制备出名义成分为Nd_2Fe_(14)B+x%Alnico(x=0,3,5)的薄带磁体,探究多元复合添加Alnico合金组成元素对薄带磁体的微结构和磁性能的影响。试验结果表明:在薄带磁体中形成了由硬磁性相Nd2Fe14B、软磁性相Fe7Co3、弱磁性或非磁性相Al_3Ni和Al_(13)Co_4以及部分非晶相组成的合金体系,在x=3时获得了最佳的综合磁性能:Hc=665kA/m,Br=0.58T,Br/Bs=0.60。  相似文献   

6.
采用熔体快淬及晶化处理工艺制备Nd11Fe72-xCo8V1.5CrB7.5(x=0,1)纳米晶合金。研究了添加Cr对合金晶化行为和磁性能的影响。结果表明,添加Cr提高了软磁相α-Fe和硬磁相Nd2Fe14B的形成温度,降低了硬磁相Nd2Fe14B的居里温度。同时,添加Cr可细化两相晶粒,提高内禀矫顽力,从而提高最大磁能积。  相似文献   

7.
简讯     
《金属功能材料》2012,(2):6+11+17+22+30+41+46+61-64
短时热处理对Nd2Fe14B/α-Fe纳米复合磁体结构和磁性影响罗马尼亚Babes-Bolyai大学物理系V.Pop等人采用高能球磨法制得Nd2Fe14B/α-Fe纳米复合磁体,并选用700℃、750℃、800℃短时间退火,同传统的550℃×1.5h退火对比。结果发现,短时间退火更有利于硬磁相再结晶,抑制软磁相成长,从而提高磁性能。及种短时退火均得到矫顽力,即提高了  相似文献   

8.
粉末热挤压制备纳米晶复相Nd2Fe14B/α-Fe永磁体   总被引:1,自引:0,他引:1  
将球磨后获得的Nd2Fe14B非晶相和α-Fe纳米晶直接进行冷压制坯、真空包套、粉末热挤压来制备近致密的纳米晶复相Nd2Fe14B/α-Fe永磁体.借助于X射线衍射(XRD)、透射电子显微镜(TEM)和振动样品磁强计(VSM)等分析方法研究了挤压温度为950℃时,不同加热时间磁体相对密度、微观组织和磁性能的影响规律.结果表明,随加热时间的延长,Nd2Fe14B及α-Fe的晶粒尺寸逐渐长大.当挤压温度为950℃,加热时间为15 min时,Nd2Fe14B及α-Fe的晶粒尺寸比较细小,分别为60和80 nm,此时磁性能最好,达到Br=0.98T,Hci=305.6 kA/m和(BH)m=89.8kJ/m3.  相似文献   

9.
为改善纳米晶交换耦合Nd2Fe14B/α-Fe永磁合金微结构以提高磁性能,用熔体快淬和动态晶化热处理的方法制备了纳米晶交换耦合Nd2Fe14B/α-Fe永磁体,采用XRD和TEM等方法系统研究了动态晶化热处理对Nd10.5(FeCoZr)83.4B6.1永磁体磁性能和显微组织的影响。结果表明:与传统晶化相比,动态晶化可以在相同的晶化温度下缩短晶化时间,同时能细化晶粒,增强晶粒间磁交换耦合作用,提高磁性能。Nd10.5(FeCoZr)83.4B6.1合金快淬薄带经700℃,10min动态晶化热处理后,制得的粘结磁体获得最佳磁性能,剩磁Br=0.685T,内禀矫顽力Hcj=732kA/m,磁感矫顽力Hcb=429kA/m,最大磁能积(BH)m=75kJ/m^3。  相似文献   

10.
对低稀土含量的Nd6Fe91B3合金进行熔体快淬处理,制备了由α-Fe相和少量的Nd2Fe14B相组成的纳米复相材料,并对其进行球磨处理25h。研究了快淬速度对淬态合金的相组成、微观结构、微波电磁性能的影响规律。研究结果表明,随着淬度的提高,淬态合金中高磁晶各向异性的Nd2Fe14B相逐渐减少,材料的自然共振频率向低频移动,但样品微波磁导率随淬速的提高而升高。淬速为40m/s的样品微波磁导率虚部在4.17GHz获得最大值μ"rmax=4.66,其实部在1.55GHz获得最大值μ’max=7.88。同时,低稀土含量的纳米复相α-Fe/Nd2Fe14B材料具有良好的微波电特性,其复介电常数在2GHz附近出现共振。由于磁损耗和电损耗共同作用,有利于该材料在GHz频段电磁波吸收材料中的应用。  相似文献   

11.
以Nd9Fe85.5-xCoxB5.5(x=0,1,3,5)合金快淬薄带(钼辊表面速度V=35 m/s)为原料采用热压/热变形工艺制备了各向同性磁体。微观组织研究表明,含Co合金快淬薄带由大量非晶和少量α-(Fe, Co)和Nd2(Fe, Co)14B相组成,含Co量达到5at%的合金薄带中出现了亚稳相Nd3-(Fe,Co)62B14,它在随后的热压/热变形过程中分解为α-(Fe,Co)和Nd2(Fe,Co)14B;添加Co元素显著减小了热变形磁体的晶粒尺寸,软磁性相与硬磁性相的平均晶粒尺寸分别从无Co合金磁体的61,168 nm减小为含1at%Co合金磁体的24,50 nm。磁性能研究表明,与晶粒尺寸变化相对应,无Co合金以晶间静磁耦合作用为主,含Co合金以晶间交换耦合作用为主,并且随着Co含量的升高,交换耦合作用有所减弱,导致热变形磁体的矫顽力从无Co磁体的151 kA/m单调增大为含5at%Co磁体的218 kA/m。  相似文献   

12.
将Fe73.5Cu1Nb3-xTixSi13.5B9(x=0,1,2,3)合金快淬带进行高能球磨制成粉末样品,在550℃真空退火1h,研究了磁粉的相结构及磁性。结果表明,随球磨时间延长,不添加Ti的Fe73.5Cu1Nb3Si13.5B9合金中析出晶化相的晶格常数增大。添加Ti的Fe73.5Cu1Nb3-xTixSi13.5B9(x=0,1,2,3)合金在球磨60h后再退火,可以得到单一α-Fe(Si)软磁相,且随Ti含量增大,析出晶化相的晶格常数减小,饱和磁化强度增大、矫顽力降低。  相似文献   

13.
微合金化是提高α-Fe/Nd2Fe14B和Fe3B/Nd2Fe14B纳米复合磁体综合磁性能的常用方法。在许多情况下,微合金化元素如铜和钕明显减小晶粒尺寸,优化硬磁性能。人们采用三维原子探针(3DAP)和透射电子显微术研究了Fe3B/Nd2Fe14B纳米复合材料微结构形成过程中铜和钕原子的团聚和偏析行为,结果发现,铜原子在非晶晶化前形成高密度原子团(~1024/m3),这些原子团成为Fe3B初次晶的非均匀形核位置,从而细化了最终纳米复合材料的组织结构。日本筑波材料科学研究所材料工程实验室材料物理小组的D. H. Ping研究了这些微量元素在α-Fe/Nd2Fe14…  相似文献   

14.
通过确定Nd2F314B中各原子的坐标,进而采用计算K值直接对比法,建立了对Nd2Fe14B/α-Fe双相永磁合金的相含量分析计算程序,对X射线衍射积分强度进行织构修正后,即可由程序计算出不同淬速下制备的Nd2Fe14B/α-Fe双相永磁合金中各相的体积含量。  相似文献   

15.
利用熔体快淬和晶化处理的方法制备了快淬Fe3B/Nd2Fe14B永磁材料。采用XRD,DTA,VSM等方法对合金的晶化行为和磁性能进行研究。结果表明:对于Fe3B/Nd2Fe14B熔体快淬永磁粉末,升温速率对各相的析出和分解温度有一定的影响。完全过淬的Nd4.5Fe77B18.5和Nd4Fe77Cr0.5B18.5合金熔体快淬粉在进行973K,7min晶化处理过程中,首先形成Nd2Fe23B3相,然后Nd2Fe23B3相发生分解,其产物为Fe3B/Nd2Fe14B,此后再没有发生其它的相转变。当晶化温度大于953K,保温10min后,样品的剩磁、矫顽力和最大磁能积明显提高。微量元素Cr的添加对相转变温度有影响,同时可以细化晶粒,提高矫顽力,从而改善材料的永磁性能。  相似文献   

16.
以Nd2Fe14B为基础的稀土永磁体具有大磁化强度、高居里温度和高磁各向异性.尽管进行了大量研究,但没有找到磁性超过Nd2Fe14B的新型永磁材料.目前,大量的注意力集中在有可能超过Nd2Fe14B烧结磁体的交换耦合纳米晶复合磁体,这种磁体是由纳米尺度的软磁和硬磁化合物晶粒组成的.在Nd-Fe-B系统中,t-Fop、Fop和肝Fe为软磁相,Nd2Fe14B为硬磁相.纳米品复合磁体具有由软磁相造成的大过饱和磁化强度和硬磁相产生的高桥涵磁力,因此,这种材料的进性依赖于复合相的种类和技量.同时,深加少量的元素(AISt,y,CrGa,An,蛇等)…  相似文献   

17.
用旋淬法制备了Nd2Fe14B/α-Fe基复相纳米交换耦合磁体粉末样品.发现样品由于在室温下的结构弛豫导致磁性能的较大变化.在淬态Nd-Fe-B非晶相和Nd2Fe14B/α-Fe纳米晶共存的三相交换磁体中,其效果更为明显.而在淬态完全非晶态或晶态的单相或复相交换磁体中,结构弛豫对磁性能的影响较弱.淬态Nd10Fe83B6In磁体粉末经过在室温下置放1年时间后,内禀矫顽力Hc由刚出炉时的296kA/m增加至384kA/m,剩磁比mr从0.55增至0.62.非晶相的存在为晶粒发展完备的晶界提供了可能,应力和缺陷集中的边界区域的结构弛豫和原子调整使得相邻接的相与相、晶粒与晶粒之间的结晶学相关性提高,交换耦合增强.同时完善的晶界也增强磁体的磁硬化.X射线衍射结果显示结构弛豫的最终结果使得衍射峰宽化,极有可能在晶界处形成了畸变的晶间相.而正是这种畸变的晶间相对磁性能的增强起了关键的作用。  相似文献   

18.
采用快淬法制备了Pr基(Nd,Pr)10.5Fe81.5-xTixCo2B6(x=0.0,1.0,2.0,3.0,4.0,5.0)系列粘结磁体,研究了添加Ti元素对快淬合金显微结构和磁性能的影响。Ti元素能有效细化合金的晶粒,添加3at%Ti的合金,晶粒细化到约70nm,且大小均匀;添加量超过3at%,晶粒进一步细化,但均匀性变差。含Ti3at%的(Nd,Pr)10.5Fe78.5Ti3Co2B6合金,粘结磁体磁性能达到最佳值,Br=0.655T,Hci=681kA/m,(BH)m=68kJ/m3。Ti元素低于3at%,合金晶粒粗大,磁性能较低;超过3at%后,富Ti的晶间相加厚,晶粒间的交换作用和剩磁增强效应减弱,且晶粒大小不均匀,合金的内禀矫顽力虽然增加,但剩磁Br和最大磁能积(BH)m降低。  相似文献   

19.
对低稀土含量的Nd6Fe91B3合金进行熔体快淬处理,制备了由a-Fe相和少量的Nd2Fe14B相组成的纳米复相材料,并对其进行球磨处理25 h.研究了快淬速度对淬态合金的相组成、微观结构、微波电磁性能的影响规律.研究结果表明,随着淬度的提高,淬态合金中高磁晶各向异性的Nd2Fe14B相逐渐减少,材料的自然共振频率向低频移动,但样品微波磁导率随淬速的提高而升高.淬速为40 m/s的样品微波磁导率虚部在4.17 GHz获得最大值μrmax=4.66,其实部在1.55 GHz获得最大值μmax =7.88.同时,低稀土含量的纳米复相α-Fe/Nd2Fe14B材料具有良好的微波电特性,其复介电常数在2 GHz附近出现共振.由于磁损耗和电损耗共同作用,有利于该材料在GHz频段电磁波吸收材料中的应用.  相似文献   

20.
热加工对纳米复合磁体性能的影响日本大同特殊钢技术开发研究所的入山恭彦用热加工方法开发出一种α-Fe/Nd2Fe14B纳米复合磁体,并研究了热加工对于磁体各向异性的影响。制作工艺大致如下:将Nd-Fe-Co-B系合金高频加热熔化,用单辊熔体旋淬法制成急冷薄带(辊面速度Vs=24m/s);然后将薄带在Ar气氛中粉碎成粒径小于350μm的粉末;  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号