首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using noble gas argon as a diluent of SiH4 in RF glow discharge, undoped μc-Si:H thin films have been developed at a low power density of 30 mW/cm2. It has been found that the gas pressure is a critical factor for the growth of μc-Si:H films. Undoped μc-Si:H films having σD10−6 S/cm and ΔE<0.57 eV have been obtained at and above a critical pressure of 0.8 Torr. When the RF power density is increased to 90 mW/cm2, a more crystalline as well as highly conducting (σD10−4 S/cm) μc-Si:H film has been achieved at a deposition rate of 30 Å/min, which is much higher than that attained from H2-diluted SiH4 plasma, by conventional approach. The crystallinity of the films has been identified by the sharp Raman peak at 520 cm−1 and a large number of micrograins in the TEM micrographs. The metastable state of Ar, denoted as Ar*, plays the crucial role in inducing microcrystallisation by transferring its de-excitation energy at the surface of the growing film. A mechanism has been proposed to explain the dependence of the formation of μc-Si:H film on the working gas pressure in the plasma.  相似文献   

2.
Au nanoparticles (NPs)/(n-type)a-Si:H/(p-type)c-Si heterojunctions have been deposited combining plasma-enhanced chemical-vapour deposition (PECVD) with Au sputtering. We demonstrate that a density of 1.3×1011 cm−2 of Au nanoparticles with an approximately 20 nm diameter deposited onto (n-type)a-Si:H/(p-type)c-Si heterojunctions enhance performance exploiting the improved absorption of light by the surface plasmon resonance of Au NPs. In particular, Au NPs/(n-type)a-Si:H/(p-type)c-Si show an enhancement of 20% in the short-circuit current, JSC, 25% in the power output, Pmax and 3% in the fill factor, FF, compared to heterojunctions without Au NPs. Structures have been characterized by spectroscopic ellipsometry, atomic force microscopy and current–voltage (IV) measurements to correlate the plasmon resonance-induced enhanced absorption of light with photovoltaic performance.  相似文献   

3.
This paper presents a-Si:H and μc-Si:H p–i–n solar cells prepared at high deposition rates using RF (13.56 MHz) excitation frequency. A high deposition pressure was found as the key parameter to achieve high efficiencies at high growth rates for both cell types. Initial efficiencies of 7.1% and 11.1% were achieved for a μc-Si:H cell and an a-Si:H/μc-Si:H tandem cell, respectively, at a deposition rate of 6 Å/s for the μc-Si i-layers. A μc-Si:H cell prepared at 9 Å/s exhibited an efficiency of 6.2%.  相似文献   

4.
The heterostructure design proposed by us for the photovoltaic (PV) solar cell is: Au–Cu/p–CdTe:Sb/n–CdO:F/glass. The CdO:F films were grown by the sol–gel method, in conditions in order to get low resistivity 4.5×10−4 Ω-cm and an optical transmission higher than 85%. The CdTe:Sb films were prepared by means of the RF sputtering technique, in conditions to get resistivity value around 106 Ω-cm, high crystalline quality and higher grain size. The Au–Cu contacts were thermally evaporated. For the study of PV-heterostructure a systematic variation of the preparation parameters were carried out. The parameters involved in the manufacture of the cell, in order to look for the highest efficiency were: (A) For the deposit of the p-CdTe:Sb films, a low argon pressure of 2.5 m Torr and high substrate temperature of 450 °C. The CdTe:Sb film thickness was varied in the interval 4.5–11 μm. (B) For the activation of the heterostructure: (i) The treatment temperature in vacuum, after the CdTe is deposited, was varied in the 350–550 °C range and (ii) the treatment temperature in Ar atmosphere, after the heterostructure is dipped in CdCl2 solution, was studied in the 400–510 °C range. (C) Optimization of the Cu–Au contact with the adequate Cu-film thickness. The highest energy conversion efficiency (η) value was 5.48%. This work reports a systematic study of the parameters involved in the solar cell manufacture, for the search of a better value of η.  相似文献   

5.
Microcrystalline silicon (μc-Si:H) prepared by plasma-enhanced chemical vapor deposition (PECVD) has been investigated as material for absorber layers in solar cells. The deposition process has been adjusted to achieve high deposition rates and optimized solar cell performance. In particular, already moderate variations of the crystalline vs. amorphous volume fractions were found to effect the electronic material – and solar cell properties. Such variation is readily achieved by changing the process gas mixture of silane to hydrogen. Best cell performance was found for material near the transition to the amorphous growth regime. With this optimized material efficiencies of 7.5% for a 2 μm thick μc-Si:H single solar cell and 12% for an a-Si:H/μc-Si:H stacked solar cell have been achieved.  相似文献   

6.
This paper describes an investigation into the impacts of hydrogenated nanocrystalline silicon (nc-Si:H) p-layer on the photovoltaic parameters, especially on the open-circuit voltage (Voc) of n–i–p type hydrogenated amorphous silicon (a-Si:H) solar cells. Raman spectroscopy and transmission electron microscopy (TEM) analyses indicate that this p-layer is a diphasic material that contains nanocrystalline grains with size around 3–5 nm embedded in an amorphous silicon matrix. Optical transmission measurements show that the nc-Si:H p-layer has a wide band gap of 1.9 eV. Using this nanocrystalline p-layer in n–i–p a-Si:H solar cells, the cell performances were improved with a Voc of 1.042 V, whereas the solar cells deposited under similar conditions but incorporating a hydrogenated microcrystalline silicon (μc-Si:H) p-layer exhibit a Voc of 0.526 V.  相似文献   

7.
We describe the fabrication and performance of dye-sensitized photoanodes derived from TiO2 aerogel. Nanocrystalline titania aerogel is a bicontinuous, nanostructured pore–solid architecture featuring specific surface areas of 85–150 m2/g and a continuous mesoporous network, allowing chemisorption of high concentrations of sensitizing dye and rapid mass-transport of electron-transfer mediators. Considerable design and processing flexibility arises with aerogels because the continuous pore–solid networks are fixed by the supercritical drying process, allowing the creation of multifunctional, nanostructured films of single or multiple layers. Titania aerogels can be processed as powders and deposited as nearly opaque films from 2 μm to >35-μm thick while retaining their bicontinuous nanoscale networks. Two-layer, 30-μm-thick TiO2 aerogel films yield incident photon-to-electron conversion efficiency (IPCE) values of 85% in the 500–600 nm range and 52% at 700 nm with N719 as a sensitizing dye and after correcting for transmittance of the 3.2-mm-thick FTO-coated glass substrates at these wavelengths.  相似文献   

8.
Different amounts of oxygen, boron-doped hydrogenated amorphous silicon (a-Si:H) and hydrogenated microcrystalline silicon (μc-Si:H) deposition were carried out using catalytic chemical-vapor deposition (Cat-CVD) process. Pure silane (SiH4), hydrogen (H2), oxygen (O2), and diluted diborane (B2H6) gases were used at the deposition pressure of 0.1–0.5 Torr. The tungsten catalyst temperature (Tfil) was varied from 1700 to 2100 °C. Sample transmittance measurement shows an optical-band gap (Egopt) variation from 1.45 to 2.1 eV X-ray diffraction (XRD) spectra have revealed silicon microcrystalline phases for the samples prepared at the temperature greater than Tfil1900 °C. For the used silicon oxide deposition conditions, no strong tungsten filament degradation was observed after a number of sample preparations.  相似文献   

9.
The growth kinetics and optoelectronic properties of intrinsic and doped microcrystalline silicon (μc-Si:H) films deposited at low temperature have been studied combining in situ and ex situ techniques. High deposition rates and preferential crystallographic orientation for undoped films are obtained at high pressure. X-ray and Raman measurements indicate that for fixed plasma conditions the size of the crystallites decreases with the deposition temperature. Kinetic ellipsometry measurements performed during the growth of p-(μc-Si:H) on transparent conducting oxide substrates display a remarkable stability of zinc oxide, while tin oxide is reduced at 200°C but stable at 150°C. In situ ellipsometry, conductivity and Kelvin probe measurements show that there is an optimum crystalline fraction for both phosphorous- and boron-doped layers. Moreover, the incorporation of p-(μc-Si:H) layers produced at 150°C in μc-Si:H solar cells shows that the higher the crystalline fraction of the p-layer the better the performance of the solar cell. On the contrary, the optimum crystalline fraction of the p-layer is around 30% when hydrogenated amorphous silicon (a-Si:H) is used as the intrinsic layer of p–i–n solar cells. This is supported by in situ Kelvin probe measurements which show a saturation in the contact potential of the doped layers just above the percolation threshold. In situ Kelvin probe measurements also reveal that the screening length in μc-Si:H is much higher than in a-Si:H, in good agreement with the good collection of microcrystalline solar cells  相似文献   

10.
A series of systematic investigations on microcrystalline silicon (μc-Si:H) solar cells at high deposition rates has been studied. The effect of high deposition pressure and narrow cathode-substrate (CS) distance on the deposition rate and quality of microcrystalline silicon is discussed. The microcrystalline silicon solar cell is adopted as middle cell and bottom cell in a three-stacked junction solar cell. The characteristics of large area three-stacked junction solar cells, whose area is 801.6 cm2 including grid electrode areas, are studied in various deposition rates from 1 to 3 nm/s of microcrystalline silicon. An initial efficiency of 13.1% is demonstrated in the three-stacked junction solar cell with microcrystalline silicon deposited at 3 nm/s.  相似文献   

11.
Highly conductive and transparent aluminum-doped zinc oxide (ZnO:Al) films were prepared by reactive mid-frequency (MF) magnetron sputtering at high growth rates. By varying the deposition pressure, pronounced differences with respect to film structure and wet chemical etching behavior were obtained. Optimized films develop good light-scattering properties upon etching leading to high efficiencies when applied to amorphous (a-Si:H) and microcrystalline (μc-Si:H) silicon-based thin-film solar cells and modules. Initial efficiencies of 7.5% for a μc-Si:H single junction and 9.7% for an a-Si:H/μc-Si:H tandem module were achieved on an aperture area of 64 cm2.  相似文献   

12.
The light-soaked and annealing behaviors for silicon (Si)-based thin-film single-junction solar cells fabricated near the phase boundary using a very-high-frequency plasma-enhanced chemical vapor deposition (VHF PECVD) technique are investigated. The hydrogen dilution ratio is changed in order to achieve wide band gap hydrogenated amorphous Si (a-Si:H) and narrow band gap hydrogenated microcrystalline Si (μc-Si:H) absorbers. Just below the a-Si:H-to-μc-Si:H transition, highly hydrogen-diluted a-Si:H solar cells with a good stability against light-soaking and fast annealing behavior are obtained. In contrast, the solar cell fabricated at the onset of the μc-Si:H growth is very unstable and its annealing behavior is slow. In the case of μc-Si:H solar cells with the crystal volume fraction of 43–53%, they show the lowest light-induced degradation among the fabricated solar cells. However, it is very difficult to recover the degraded μc-Si:H solar cells via thermal annealing.  相似文献   

13.
Encapsulated and series-connected amorphous silicon (a-Si:H) and microcrystalline silicon (μc-Si:H) based thin film silicon solar modules were developed in the superstrate configuration using an aluminum foil as temporary substrate during processing and a commodity polymer as permanent substrate in the finished module. For the development of μc-Si:H single junction modules, aspects regarding TCO conductivity, TCO reduction, deposition uniformity, substrate temperature stability and surface morphology were addressed. It was established that on sharp TCO morphologies where single junction μc-Si:H solar cells fail, tandem structures consisting of an a-Si:H top cell and a μc-Si:H bottom cell can still show a good performance. Initial aperture area efficiencies of 8.2%, 3.9% and 9.4% were obtained for fully encapsulated amorphous silicon (a-Si:H) single junction, microcrystalline silicon (μc-Si:H) single junction and a-Si:H/μc-Si:H tandem junction modules, respectively.  相似文献   

14.
We developed microcrystalline silicon (μc-Si:H) thin film solar modules on textured ZnO-coated glass. The single junction (p–i–n) cell structure was prepared by plasma-enhanced chemical vapour deposition (PECVD) at substrate temperatures below 250 °C. Front ZnO and back contacts were prepared by sputtering. A process for the monolithic series connection of μc-Si:H cells by laser scribing was developed. These microcrystalline p–i–n modules showed aperture area efficiencies up to 8.3% and 7.3% on aperture areas of 64 and 676 cm2, respectively. The temperature coefficient of the efficiency was −0.4%/K.  相似文献   

15.
A p-a-Si:H layer, deposited by a photo-assisted chemical vapor deposition (photo-CVD) method, was adopted as the window layer of a hydrogenated microcrystalline silicon (μc-Si:H) solar cell instead of the conventional p-μc-Si:H layer. We verified the usefulness of p-a-Si:H for the p-layer of the μc-Si:H solar cell by applying it to SnO2-coated glass substrate. It was found that the quantum efficiency (QE) characteristics and solar cell performance strongly depend on the p-a-Si:H layer thicknesses. We applied boron-doped nanocrystalline silion (nc-Si:H) p/i buffer layers to μc-Si:H solar cells and investigated the correlation of the p/i buffer layer B2H6 flow rate and solar cell performance. When the B2H6 flow rate was 0.2 sccm, there was a little improvement in fill factor (FF), but the other parameters became poor as the B2H6 flow rate increased. This is because the conductivity of the buffer layer decreases as the B2H6 flow rate increases above appropriate values. A μc-Si:H single-junction solar cell with ZnO/Ag back reflector with an efficiency of 7.76% has been prepared.  相似文献   

16.
Single-chamber solid oxide fuel cells with coplanar microelectrodes were operated in methane–air mixtures (Rmix = 2) at 700 °C. The performance of cells with one pair of NiO–YSZ (yttria stabilized zirconia) anode and (La0.8Sr0.2)0.98MnO3–YSZ cathode, arranged parallel on a YSZ electrolyte substrate, was found to be significantly dependent on the electrode width. For an interelectrode gap of 250 μm, cells with average electrode widths exceeding 850 μm could establish a stable open circuit voltage (OCV) of 0.8 V, while those with widths less than 550 μm could not establish any OCV. In the intermediate range, the cells exhibited significant fluctuations in voltage and power under our testing conditions. This behavior suggests that a lower limit to electrode dimensions exists for cells with single electrode pairs, below which neither a stable difference in oxygen partial pressure, nor an OCV, can be established. Conversely, increasing the electrode width imposes a penalty in the form of an increase in the cell resistance. However, both size limits can be circumvented by employing multiple pairs of microscale electrodes in an interdigitated configuration.  相似文献   

17.
The low-temperature deposition of μc-Si:H has been found to be effective to suppress the formation of oxygen-related donors that cause a reduction in open-circuit voltage (Voc) due to shunt leakage. We demonstrate the improvement of Voc by lowering the deposition temperature down to 140°C. A high efficiency of 8.9% was obtained using an Aasahi-U substrate. Furthermore, by optimizing textured structures on ZnO transparent conductive oxide substrates, an efficiency of 9.4% was obtained. In addition, relatively high efficiency of 8.1% was achieved using VHF (60 MHz) plasma at a deposition rate of 12 Å s−1. Thus, this low-temperature deposition technique for μc-Si:H is promising for obtaining both high efficiency and high-rate deposition technique for μc-Si:H solar cells.  相似文献   

18.
Boron-doped hydrogenated microcrystalline silicon (μc-Si:H) films were prepared using hot-wire chemical vapor deposition (HWCVD) technique. Structural, electrical and optical properties of these thin films were systematically studied as a function of B2H6 gas (diborane) phase ratio (Variation in B2H6 gas phase ratio, dopant gas being diluted in hydrogen, affected the film properties through variation in doping level and hydrogen dilution). Characterization of these films from low angle X-ray diffraction and Raman spectroscopy revealed that the high conductive film consists of mixed phase of microcrystalline silicon embedded in an amorphous network. Even a small increase in hydrogen dilution showed marked effect on film microstructure. At the optimized deposition conditions, films with high dark conductivity (0.08 (Ω cm)−1) with low charge carrier activation energy (0.025 eV) and low optical absorption coefficient with high optical band gap (2.0 eV) were obtained. At these deposition conditions, however, the growth rate was small (6 Å/s) and hydrogen content was large (9 at%).  相似文献   

19.
Hydrogenated microcrystalline silicon (μc-Si:H) films were deposited by electron beam excited plasma (EBEP) CVD. As the SiH4 flow rate increases, deposition rate steeply increases, however, crystalline fraction and grain size decrease. A high deposition rate of 69 nm/min is achieved using SiH4 without H2 dilution. It is shown that H atom plays key roll for μc-Si:H formation. Results show that deposition mechanism of μc-Si:H by EBEP is mainly controlled by the reaction in the plasma rather than the reaction on the film surface.  相似文献   

20.
A new type of counter electrode comprising of Pt and NiO biphase was prepared an RF magnetron cosputtering system for a dye-sensitized solar cell (DSSC). Transmission electron microscope images, transmission electron diffraction patterns, and X-ray diffraction patterns of the Pt–NiO electrodes confirmed the formation of a nanosized Pt polycrystalline phase of 7 nm mixed with porous amorphous NiO phase. The short-circuit current density and cell efficiency were increased from 0.22 to 0.30 mA/cm2 and from 2.1% to 2.8%, respectively, and almost constant open-circuit voltage and fill factor, 0.53 V and 63%, respectively, were observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号