首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A green facile method has been successfully used for the synthesis of graphene oxide sheets decorated with silver nanoparticles (rGO/AgNPs), employing graphite oxide as a precursor of graphene oxide (GO), AgNO3 as a precursor of Ag nanoparticles (AgNPs), and geranium (Pelargonium graveolens) extract as reducing agent. Synthesis was accomplished using the weight ratios 1:1 and 1:3 GO/Ag, respectively. The synthesised nanocomposites were characterised by scanning electron microscopy, transmission electron microscopy, atomic force microscopy, X‐ray diffraction, UV‐visible spectroscopy, Raman spectroscopy, energy dispersive X‐ray spectroscopy and thermogravimetric analysis. The results show a more uniform and homogeneous distribution of AgNPs on the surface of the GO sheets with the weight ratio 1:1 in comparison with the ratio 1:3. This eco‐friendly method provides a rGO/AgNPs nanocomposite with promising applications, such as surface enhanced Raman scattering, catalysis, biomedical material and antibacterial agent.Inspec keywords: silver, nanoparticles, graphene, nanocomposites, scanning electron microscopy, transmission electron microscopy, atomic force microscopy, X‐ray diffraction, ultraviolet spectra, visible spectra, X‐ray chemical analysis, surface enhanced Raman scattering, catalysis, nanofabricationOther keywords: antibacterial agent, biomedical material, catalysis, surface enhanced Raman scattering, rGO‐AgNP nanocomposite, eco‐friendly method, homogeneous distribution, thermogravimetric analysis, energy dispersive X‐ray spectroscopy, Raman spectroscopy, UV‐visible spectroscopy, X‐ray diffraction, atomic force microscopy, transmission electron microscopy, scanning electron microscopy, nanocomposites, reducing agent, geranium, graphene oxide sheets, graphite oxide, silver nanoparticles, green facile method  相似文献   

2.
An in situ chemical synthesis approach has been employed to prepare an Ag-chemically converted graphene (CCG) nanocomposite. The reduction of graphene oxide sheets was accompanied by generation of Ag nanoparticles. The structure and composition of the nanocomposites were confirmed by means of transmission electron microscopy (TEM), atomic force microscopy (AFM) and X-ray diffraction. TEM and AFM results suggest a homogeneous distribution of Ag nanoparticles (5–10 nm in size) on CCG sheets. The intensities of the Raman signals of CCG in such nanocomposites are greatly increased by the attached silver nanoparticles, i.e., there is surface-enhanced Raman scattering activity. In addition, it was found that the antibacterial activity of free Ag nanoparticles is retained in the nanocomposites, which suggests they can be used as graphene-based biomaterials.   相似文献   

3.
In this paper, the existence of both compressive stress and charge transfer process in hydrothermally synthesized cobalt ferrite–graphene oxide (CoFe2O4/GO) nanocomposites has been established. Transmission electron microscopy results reveal the decoration of CoFe2O4 nanoparticles on GO sheets. Magnetic response of nanocomposites was confirmed from superconducting quantum interference device magnetometer measurement. Optical properties of these nanocomposites were investigated by Raman spectroscopy. The interfacial compressive stress involved in this system has been evaluated from observed blue shift of characteristic G peak of graphene oxide. Increase in the full-width half-maximum value as well as upshift in D and G peaks is clear indications of involvement of charge transfer process between GO sheets and dispersed magnetic nanoparticles. The effect of charge transfer process is quantified in terms of shifting of Fermi energy level of these nanocomposites. This is evaluated from variation in contact surface potential difference using scanning Kelvin probe microscopy. XRD spectra of CoFe2O4/GO confirm the polycrystalline nature of CoFe2O4 nanoparticles. Lattice strain estimated from XRD peaks is correlated with the observed Raman shift.  相似文献   

4.
The catalytic properties of silver nanoparticles supported on silica and the relation between catalytic activity of silver particles and the support (silica) size are investigated in the present article. The silver nanoparticles with 4 nm diameters were synthesized and were attached to silica spheres with sizes of 40, 78, 105 nm, respectively. The reduction of Rhodamine 6G (R6G) by NaBH4 was designed by using the SiO2/Ag core-shell nanocomposites as catalysts. The experimental results demonstrated that the catalytic activity of silica/silver nanoparticles depends on not only the concentration of catalysts (silver) but also the support silica size. Silver particles supported on small SiO2 spheres (approximately 40 nm) show high catalytic activity. Moreover, by making a comparison between the UV-vis spectra of the catalyst before and after the catalytic reaction, we found that the position of surface plasma resonance (SPR) peak of Ag nanoparticles changes little. The above results suggested that the size and morphology of silver particles were probably kept unchanged after the reduction of R6G and also implied that the catalytic activity of silver particles was hardly lost during the catalytic reaction.  相似文献   

5.
Silver (Ag) nanoparticles were synthesized on the surface of graphene sheet by the simultaneous reduction of Ag+ and graphene oxide (GO) in the presence of simple reducing agent, hydrazine hydrate (N2H4 x H2O). Both the Ag+ and GO were reduced and Ag+ was nucleated onto graphene. GO flakes were prepared by conventional chemical exfoliation method and in the presence of strong acidic medium of potassium chlorate. Silver nanoparticles were prepared using 0.01 M AgNO3 solution. The reduced GO sheet decorated with Ag is referred as G-Ag sample. G-Ag was characterized by FTIR (Fourier transform infrared) spectroscopy using GO as standard. An explicit alkene peak appeared around 1625 cm(-1) was observed in G-Ag sample. Besides, the characteristic carbonyl and hydroxyl peaks shows well reduction of GO. The FTIR therefore confirms the direct interaction of Ag into Graphene. SEM (scanning electron microscopy) and TEM (transmission electron microscopy) analysis were performed for morphological probing. The average size of Ag nanoparticles was confirmed by around 5-10 nm by the high-resolution TEM (HRTEM). The Ag quantum dots incorporated nanocomposite material could become prominent candidate for diverse applications including photovoltaic, catalysis, and biosensors etc.  相似文献   

6.
Magnetic and conducting Nickel oxide–polypyrrole (NiO/PPy) nanoparticles with core–shell structure were prepared in the presence of Nickel oxide (NiO) in aqueous solution containing sodium dodecyl benzenesulfonate (SDBS) as a surfactant as well as dopant. A stable dispersion of silver (Ag) nanoparticles was synthesized by chemical (citrate reduction) method. NiO/PPy nanocomposites were added to the Ag colloid under stirring. Ag nanoparticles could be electrostatically attracted on the surface of NiO/PPy nanocomposites, leading to formation of NiO/PPy/Ag nanocomposites with core/shell/shell structure. The morphology, structure, particle size and composition of the products were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, cyclic voltammetry (CV) and current–voltage (IV) analysis. The resultant nanocomposites have the good conductivity and excellent electrochemical and catalytic properties of PPy and Ag nanoparticles. Furthermore, the nanocomposites showed excellent antibacterial behaviour due to the presence of Ag nanoparticles in the composite. The thermal stability of NiO–PPy as well as NiO/PPy/Ag nanocomposites was higher than that of pristine PPy. Studies of IR spectra suggest that the increased thermal stability may be due to interactions between NiO and Ag nanoparticles with the PPy backbone.  相似文献   

7.
The nano-scale Ag3PO4 was successfully synthesized by the silver ammonia complexing precipitation method at room temperature. And the Graphene oxide (GO)/Ag3PO4 nanocomposites with different contents of GO were successfully synthesized using the electrostatic driving method. The as-prepared GO/Ag3PO4 nanocomposites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV–visible diffuse reflectance spectroscopy (UV–Vis DRS), confirming that Ag3PO4 were highly dispersed to GO sheet. The photocatalytic properties of GO/Ag3PO4 were evaluated by the degradation of Methyl Orange (MO) under visible light irradiation and solar irradiation respectively. The results showed that the photocatalytic efficiencies of GO/Ag3PO4 nanocomposites had enhanced largely and the kinetics reaction models were followed first-order. Furthermore, 5% GO/Ag3PO4 exhibited the highest photocatalytic activity on degradation of MO under visible-light irradiation. The improved photocatalytic performances of the GO/Ag3PO4 nanocomposites mainly attributed to the introducing of GO, which benefit for electron transfer and inhibit the recombination of electron–hole pairs, promoting the practical application of Ag3PO4 in water purification.  相似文献   

8.
Silver nanoparticles with a narrow size distribution were synthesized over the surface of two different commercial TiO(2) particles using a simple aqueous reduction method. The reducing agent used was NaBH(4); different molar ratios TiO(2):Ag were also used. The nanocomposites thus prepared were characterized using transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), x-ray photoelectron spectroscopy (XPS), x-ray diffraction (XRD), dynamic light scattering (DLS) and UV-visible (UV-vis) absorption spectroscopy; the antibacterial activity was assessed using the standard microdilution method, determining the minimum inhibitory concentration (MIC) according to the National Committee for Clinical Laboratory Standards. From the microscopy studies (TEM and STEM) we observed that the silver nanoparticles are homogeneously distributed over the surface of TiO(2) particles and that the TiO(2):Ag molar ratio plays an important role. We used three different TiO(2)Ag molar ratios and the size of the silver nanoparticles is 10, 20 and 80?nm, respectively. It was found that the antibacterial activity of the nanocomposites increases considerably comparing with separated silver nanoparticles and TiO(2) particles.  相似文献   

9.
《Materials Letters》2005,59(24-25):3046-3049
Ag nanoparticles dispersed in polyacrylonitrile (PAN) nanofiber film spun by electrospinning were in situ prepared by reduction of silver ions in N2H5OH aqueous solution. The Ag/PAN nanocomposite film was characterized by UV absorption spectroscopy, transmission electron microscopy (TEM) and surface-enhanced Raman scattering (SERS) spectroscopy. UV spectrum and TEM image show that silver nanoparticles with average diameter of 10 nm were obtained and dispersed homogeneously in PAN nanofibers. SERS spectrum indicates that the structure of PAN has been changed after Ag nanoparticles are dispersed in PAN.  相似文献   

10.
Polypyrrole–silver (PPy–Ag) nanocomposites with various silver contents have been synthesized via a kinetically favorable one-step chemical oxidative polymerization process. The oxidant, ammonium persulfate, was used to oxidize pyrrole monomer for growing chains of PPy. And AgNO3 was used as a precursor for metallic silver nanoparticles. The detailed characterization techniques, UV–Vis–NIR, fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction spectroscopy, field-emission scanning electron microscopy, and transmission electron microscopy (TEM), have been used to reveal electronic environment, structure, and morphology of composites as well as as-synthesized PPy. The synthesis environment prior to polymerization has also been investigated by absorption spectroscopy. The TEM images of PPy–Ag nanocomposites reveal that silver nanoparticles are deeply embedded into the polymer matrix in addition to surface adsorption. It is observed that the size distribution of inorganic nanoparticles (ca. 4–10 nm, depending on the metal ion concentrations) as well as structural morphology is altered by the initial concentrations of silver ions.  相似文献   

11.
A weak-polyelectrolyte multilayer on a surface of titanate nanobelts (Ti-NBs) was utilized as a template for in situ Ag nanoparticle formation in the fabrication of Ag-loaded Ti-NBs nanocomposites. The polyelectrolyte multilayer (PEM) was fabricated using layer-by-layer self-assembly of poly(acrylic acid) (PAA) and poly(allylamine hydrochloride) (PAH) on the surface of high-surface-area titanate nanobelts (Ti-NBs) synthesized using a hydrothermal procedure. The concentration of Ag nanoparticles in the PEM was controlled by repeating the ion-loading/reduction cycle. The subsequent annealing of the Ag/Ti-NBs-PEM nanocomposites yielded nanostructured crystalline Ag/Ti-NBs. Transmission electron microscopy (TEM) techniques (HRTEM, SAED) and x-ray powder diffraction (XRD) were employed to evaluate the morphological, structural and growth characteristics of the silver nanocrystallites in the Ag/Ti-NBs nanocomposites. The UV-vis photoactivity of the as-fabricated nanocomposites was monitored by the degradation of the cationic dye methylene blue (MB). An enhanced UV photo-efficiency was observed for the Ag/Ti-NBs nanocomposites compared with pure Ti-NBs. As-fabricated Ag(x)/Ti-NBs nanocomposites also exhibited visible photoactivity assisted by the near-field amplitudes of the localized surface plasmon resonance (LSPR) of the silver nanoparticles in the 1D nanocomposite.  相似文献   

12.
Palladium–silver bimetallic nanoparticles loaded on reduced graphene oxide (Pd–Ag/RGO) were prepared by co-reduction of mixed metal salts and graphene oxide (GO) with urea-assisted ethylene glycol (EG). The as-obtained Pd–Ag/RGO nanocomposites were characterized by X-ray diffraction, transmission electronic microscopy, and UV–Vis absorption spectroscopy. The results show that the nanoparticles with an average particle size of 5 nm are dispersed on the surface of RGO highly uniformly, besides the Pd–Ag bimetallic nanoparticles are more helpful to promote the reduction of GO than monometal ones. The electrochemical activities of the as-prepared nanocomposites for ethanol oxidation were investigated by using cyclic voltammetry and chronoamperometry in alkaline solution. Compared to the Pd–Ag/E-tek carbon (Pd–Ag/C) and Pd–Ag/multi-walled carbon nanotubes (Pd–Ag/MWCNTs) which were fabricated by the same method, the Pd–Ag/RGO exhibit much higher electrocatalytic activity, stronger tolerance to CO and better stability during the ethanol electro-oxidation reaction in alkaline media. The electrocatalytic performances of Pd–Ag/RGO with different mass ratios of Pd–Ag toward ethanol oxidation in alkaline media were also studied. The results indicate that the electrocatalytic activity of Pd–Ag/RGO with 1:1 mass ratio of Pd–Ag is the best.  相似文献   

13.
Abstract

Composites comprising platinum nanoparticles loaded on [C60]fullerene nanowhiskers were prepared by a liquid-liquid interfacial precipitation method. The synthesized platinum nanoparticle-[C60]fullerene nanowhisker composites were characterized by X-ray diffraction, Raman spectroscopy, scanning electron microscopy, and transmission electron microscopy. The catalytic activity of the platinum nanoparticle-[C60]fullerene nanowhisker composites was confirmed for the reduction of 4-nitrophenol by UV–vis spectroscopy. The reduction of 4-nitrophenol catalyzed by the platinum nanoparticle-[C60]fullerene nanowhisker composites followed the pseudo-first-order reaction rate law.  相似文献   

14.
Nanoparticle‐assembled octahedral Ag nanocages with sharp edges have been successfully synthesized through a Cu2O‐based template‐assisted strategy. In the reaction system, Ag nanoparticles can be self‐assembled on the surface of Cu2O octahedrons, which is accomplished by the reduction of Ag+ by NaBH4 in the presence of sodium citrate as a capping agent. The hollow octahedral Ag nanocages are obtained after removing the inner Cu2O cores with acetic acid. According to the scanning electron microscopy (SEM) and transmission electron microscopy characterization, the Ag nanocages are weaved by small nanoparticles, the rough surfaces are bestrewed with pores and sharp edges. It is found that the pack density of Ag nanoparticles strongly affects the surface enhanced Raman scattering (SERS) activities. The as‐prepared 1.05‐Ag cages with optimal pack density have suitable interparticle distance and suitable size of pores, which significantly enhance SERS signals. The SERS signals of rhodamine 6G (R6G) molecules can be detected at an ultralow concentration of 10?14 m when 1.05‐Ag cages are used as substrates. In addition to sensitivity, 1.05‐Ag cages also exhibit good reproducibility. It is expected that the ultrahigh sensitivity will endow the Ag nanocages to become a promising candidate as high‐performance SERS‐based chemical sensor.  相似文献   

15.
In this work, an Fe3 O4 /HZSM‐5 nanocomposite was synthesised in the presence of Juglans regia L. leaf extract. Then, silver nanoparticles (Ag NPs) were immobilised on the surface of prepared magnetically recoverable HZSM‐5 using selected extract for reduction of Ag+ ions to Ag NPs and their stabilisation on the surface of the nanocomposite. The reduction of Ag+ ions occurs at room temperature within a few minutes. Characterisation of the prepared catalysts has been carried out using fourier transform infrared (FT‐IR), X‐ray diffraction, field‐emission scanning electron microscopy (FESEM), energy‐dispersive spectroscopy, Brunauer–Emmett–Teller method, and a vibrating sample magnetometer. According to the FESEM images of the nanocomposites, the average size of the Ag NPs on the Fe3 O4 /HZSM‐5 surface was >70 nm. The Ag/Fe3 O4 /HZSM‐5 nanocomposite was a highly active catalyst for the reduction of methyl orange and 4‐nitrophenol in aqueous medium. The utilisation of recycled catalyst for three times in the reduction process does not decrease its activity.Inspec keywords: silver, X‐ray chemical analysis, X‐ray diffraction, nanocomposites, reduction (chemical), nanofabrication, nanoparticles, transmission electron microscopy, catalysts, Fourier transform infrared spectra, iron compounds, field emission scanning electron microscopy, zeolites, magnetometry, particle sizeOther keywords: Ag‐Fe3 O4 , temperature 293 K to 298 K, green synthesis, catalyst material, 4‐nitrophenol reduction, methyl orange reduction, particle size, vibrating sample magnetometry, Brunauer–Emmett–Teller method, field‐emission scanning electron microscopy, X‐ray diffraction, FT‐IR spectroscopy, silver nanoparticles, Juglans regia L. leaf extract, organic pollutant reduction, magnetically recoverable nanocomposites, energy‐dispersive spectroscopy  相似文献   

16.
Feng Wu  Qing Yang 《Nano Research》2011,4(9):861-869
A new protocol for the synthesis of nearly monodisperse gold nanoparticles with controllable size is described. The pathway is based on the reduction of AuCl4 by ammonium bicarbonate in the presence of sodium stearate under hydrothermal conditions. The particle sizes could be easily tuned by regulating the reaction conditions including precursor concentration, reaction temperature and growth time. A tentative explanation for the reduction and growth mechanism of uniform gold nanoparticles has been proposed. The as-prepared gold particles showed good catalytic activity for the reduction of 4-nitrophenol to 4-aminophenol by excess NaBH4, and a surface-enhanced Raman scattering (SERS) study suggested that the gold nanoparticles exhibited a high SERS effect on the probe molecule Rhodamine 6G.   相似文献   

17.
Several materials such as silver are used to enhance graphene oxide (GO) sheets antimicrobial activity. However, these toxic materials decrease its biocompatibility and hinder its usage in many biological applications. Therefore, there is an urgent need to develop nanocomposites that can preserve both the antimicrobial activity and biocompatibility simultaneously. This work highlights the importance of functionalisation of GO sheets using Polyvinylpyrrolidone (PVP) and decorating them with silver nanoparticles (AgNPs) in order to enhance their antimicrobial activity and biocompatibility at the same time. The structural and morphological characterisations were performed by UV‐Visible, Fourier transform infrared (FTIR), and Raman spectroscopic techniques, X‐ray diffraction (XRD), and high‐resolution transmission electron microscopy (HR‐TEM). The antimicrobial activities of the prepared samples against Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans were studied. The cytotoxicity of prepared materials was tested against BJ1 normal skin fibroblasts. The results indicated that the decoration with AgNPs showed a significant increase in the antimicrobial activity of GO and FGO sheets, and functionalisation of GO sheets and GO‐Ag nanocomposite with PVP improved the cell viability about 40 and 35%, respectively.Inspec keywords: biomedical materials, nanocomposites, visible spectra, ultraviolet spectra, X‐ray diffraction, cellular biophysics, nanoparticles, Raman spectra, filled polymers, transmission electron microscopy, silver, microorganisms, antibacterial activity, nanomedicine, nanofabrication, graphene compounds, toxicology, Fourier transform infrared spectraOther keywords: graphene oxide‐silver nanocomposite, polyvinylpyrrolidone, toxic materials, biocompatibility, antimicrobial activity, morphological characterisations, structural characterisations, UV‐visible spectra, Fourier transform infrared spectra, Raman spectra, X‐ray diffraction, high‐resolution transmission electron microscopy, Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans, cytotoxicity, BJ1 normal skin fibroblasts, cell viability, CO‐Ag  相似文献   

18.
Wang N  Wen Y  Wang Y  Zhang R  Chen X  Ling B  Huan S  Yang H 《Nanotechnology》2012,23(14):145702
The stable small Ag seeds (size in diameter < 10 nm) were obtained in the presence of inositol hexakisphosphoric (IP?) micelles. Then Ag-Au bimetallic nanoparticles were synthesized through a replacement reaction with the rapid interdiffusion process between such small Ag seeds in nanoclusters and HAuCl?. Adjusting the dosage of HAuCl? resulted in different products, which possessed unique surface plasmon resonances (SPR). The morphologies of the as-made nanoparticles were observed using transmission electron microscopy and field emission scanning electron microscopy and their compositions were determined by energy-dispersive x-ray spectroscopy. Among them, the Ag-Au alloy nanoparticles with the cauliflower-like structure had a suitable SPR for highly sensitive Raman detection application as a surface-enhanced Raman scattering (SERS) substrate with a long-term stability of six months.  相似文献   

19.
Silver nanomaterials have become important research topics in recent years. As a new type of fluorescent material, silver nanomaterials have been applied to fluorescent sensors, bioimaging and materials targeting cancer cells. Here, an approach to the oligonucleotide‐templated controllable formation of fluorescent Ag nanomaterials is reported. In this experiment, silver nanoparticles (NPs) were synthesised from oligonucleotides chains, sodium borohydride (NaBH4) and silver nitrate (AgNO3) by changing the molar ratio of DNA to sodium borohydride (NaBH4) and silver nitrate (AgNO3). Fluorescent assay and transmission electron microscopy were used to characterise the silver NPs. The optimal selection of DNA chains with different lengths as templates for the synthesis of silver NPs was found. This work successfully develops the capping oligonucleotides scaffolds of silver nanoclusters.  相似文献   

20.
《Materials Letters》2007,61(23-24):4528-4530
Ag/polypyrrole nanocomposites were successfully synthesized via in situ chemical oxidation polymerization of pyrrole based on mercaptocarboxylic acid capped Ag nanoparticles colloid. Scanning electron microscopy (SEM) measurement showed that the obtained Ag/polypyrrole nanocomposites were spherical. Transmission electron microscopy (TEM) measurement showed that the Ag nanoparticles were inside the polypyrrole particles and had a little aggregation. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectra were used to characterize the structure of the obtained Ag/polypyrrole nanocomposites. A possible formation mechanism of the Ag/polyrrole nanocomposites was also proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号