首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A facile fabrication approach of large‐scale flexible films is reported, with one surface side consisting of Ag‐nanoparticle (Ag‐NP) decorated polyacrylonitrile (PAN) nanohump (denoted as Ag‐NPs@PAN‐nanohump) arrays. This is achieved via molding PAN films with ordered nanohump arrays on one side and then sputtering much smaller Ag‐NPs onto each of the PAN‐nanohumps. Surface‐enhanced Raman scattering (SERS) activity of the Ag‐NPs@PAN‐nanohump array films can be improved by curving the flexible PAN film with ordered nanohump arrays during the Ag‐sputtering process to increase the density of the Ag‐NPs on the sidewalls of the PAN‐nanohumps. More 3D hot spots are thus achieved on a large‐scale. The Ag‐NPs@PAN‐nanohump array films show high SERS activity with good Raman signal reproducibility for Rhodamine 6G probe molecules. To trial their practical application, the Ag‐NPs@PAN‐nanohump array films are employed as SERS substrates for trace detection of trinitrotoluene and a congener of polychlorinated biphenyls. A lower detection limit of 10−12m and 10−5m can be achieved, respectively. Furthermore, the flexible Ag‐NPs@PAN‐nanohump array films can also be utilized as swabs to probe traces of methyl parathion on the surface of fruits such as apples. The as‐fabricated SERS substrates therefore have promising potential for applications in rapid safety inspection and environmental protection.  相似文献   

2.
It is a significant challenge to achieve controllable self‐assembly of superstructures for biological applications in living cells. Here, a two‐layer core–satellite assembly is driven by a Y‐DNA, which is designed with three nucleotide chains that hybridized through complementary sequences. The two‐layer core–satellite nanostructure (C30S5S10 NS) is constructed using 30 nm gold nanoparticles (Au NPs) as the core, 5 nm Au NPs as the first satellite layer, and 10 nm Au NPs as the second satellite layer, resulting in a very strong circular dichroism (CD) and surface‐enhanced Raman scattering. After optimization, the yield is up to 85%, and produces a g‐factor of 0.16 × 10?2. The hybridization of the target microRNA (miRNA) with the molecular probe causes a significant drop in the CD and Raman signals, and this phenomenon is used to detect the miRNA in living cells. The CD signal has a good linear range of 0.011–20.94 amol ngRNA?1 and a limit of detection (LOD) of 0.0051 amol ngRNA?1, while Raman signal with the range of 0.052–34.98 amol ngRNA?1 and an LOD of 2.81 × 10?2 amol ngRNA?1. This innovative dual‐signal method can be used to quantify biomolecules in living cells, opening the way for ultrasensitive, highly accurate, and reliable diagnoses of clinical diseases.  相似文献   

3.
Silicon nanowire arrays (SiNWAs) decorated with metallic nanoparticle heterostructures feature promising applications in surface-enhanced Raman scattering (SERS). However, the densely arranged SiNWAs are usually inconvenient for the following decoration of metallic nanoparticles, and only the top area of silicon nanowires (SiNWs) contributes to the SERS detection. To improve the utilization of the heterostructure, herein, oblique SiNWAs were grown separately, and Ag nanoparticles (AgNPs) were uniformly deposited by magnetron sputtering to get the three-dimensional (3D) SiNWAs decorated with AgNPs (AgNPs-SiNWAs) SERS substrate. The large open surfaces of oblique SiNWs would create more surface area available for the formation of hotspots and improve the adsorption and excitation of analyte molecules on the wire. The optimized AgNPs-SiNWAs substrate exhibits high sensitivity in detecting chemical molecule Rhodamine 6G, and the detection limit can reach 1 × 10?10 M. More importantly, the substrate also can be used as an effective DNA sensor for label-free DNA detection.  相似文献   

4.
A novel droplet‐based surface‐enhanced Raman scattering (SERS) sensor for high‐throughput real‐time SERS monitoring is presented. The developed sensors are based on a droplet‐guiding‐track‐engraved superhydrophobic substrate covered with hierarchical SERS‐active Ag dendrites. The droplet‐guiding track with a droplet stopper is designed to manipulate the movement of a droplet on the superhydrophobic substrate. The superhydrophobic Ag dendritic substrates are fabricated through a galvanic displacement reaction and subsequent self‐assembled monolayer coating. The optimal galvanic reaction time to fabricate a SERS‐active Ag dendritic substrate for effective SERS detection is determined, with the optimized substrate exhibiting an enhancement factor of 6.3 × 105. The height of the droplet stopper is optimized to control droplet motion, including moving and stopping. Based on the manipulation of individual droplets, the optimized droplet‐based real‐time SERS sensor shows high resistance to surface contaminants, and droplets containing rhodamine 6G, Nile blue A, and malachite green are successively controlled and detected without spectral interference. This noble droplet‐based SERS sensor reduces sample preparation time to a few seconds and increased detection rate to 0.5 µ L s?1 through the simple operation mechanism of the sensor. Accordingly, our sensor enables high‐throughput real‐time molecular detection of various target analytes for real‐time chemical and biological monitoring.  相似文献   

5.

Silica nanospheres have been explored much for drug delivery, photocatalysis, sensors and energy storage applications. It also acts as a template for Surface-Enhanced Raman Spectroscopy (SERS) substrates. Uniform nanostructures at low cost with high reproducibility are the major challenges in SERS substrate fabrication. In the present work, silica nanospheres were synthesized using stober method and deposited on to glass slides using Vertical deposition techniques. Different size/thickness of Silver (Ag) nanoparticles were deposited onto silica thin films using sputter deposition technique. The monodispersity of silica nanospheres and size of silver nanoparticles (10 nm, 20 nm and 30 nm) were confirmed by FESEM analysis. The structural properties were confirmed through XRD. UV–Vis analysis revealed that the plasmonic properties of Ag@SiO2 give high surface plasmons for 30 nm thickness of silver. The binding energy of Ag@SiO2 confirmed through XPS spectrum. The fabricated SERS substrates were used to detect Rhodamine 6G (R6G), Methylene blue (MB), Methylene violet (MV) and Methyl orange dyes as an analyte molecule with a limit of detection at about 10?11 mol/L. The addition of SiO2 nanospheres decreases the Ag oxidation rate and increases their stability. The maximum enhancement factor (1.5?×?107) achieved for 30nm thickness of Ag@SiO2. The results and technique establish the potential applications and reproducible SERS substrate.

  相似文献   

6.
Ag nanoparticles (NPs) modified graphene nanoribbons (GNRs) are proposed to function as the high-performance shared substrates for surface-enhanced Raman and infrared absorption spectroscopy (SERS and SEIRAS). This is realized by modulating the localized plasmonic resonances of Ag NPs in visible region and GNRs in mid-infrared region simultaneously, so as to selectively employ each resonance to acquire SERS and SEIRAS on a single substrate. As a proof of concept, shared substrates are prepared by fabricating GNRs on a Fabry–Pérot like cavity, followed by depositing a thin Ag film with annealing treatment to achieve Ag NPs. Complementary Raman and infrared active vibrational modes of rhodamine 6G molecules can be extracted from the SERS and SEIRAS spectra. By optimizing the dimension of Ag NPs, SERS enhancement factors at the order of 105 can be achieved, which are comparable with or even larger than that of the reported shared substrates. Meanwhile, various polyethylene oxide vibrational modes can be recognized with maximum SEIRAS amplification up to 170 times, which is one order larger than that of the reported graphene plasmonic infrared sensors. Such plasmonic nanosensor with excellent SERS and SEIRAS performance exhibits promising potential for biosensing applications on an integrated lab-on-a-chip strategy.  相似文献   

7.
Self‐assembled nanostructures have been used for the detection of numerous cancer biomarkers. In this study, a gold‐upconversion‐nanoparticle (Au‐UCNP) pyramid based on aptamers is fabricated to simultaneously detect thrombin and prostate‐specific antigen (PSA) using surface‐enhanced Raman scattering (SERS) and fluorescence, respectively. The higher the concentration of thrombin, the lower the intensity of SERS. PSA connected with the PSA aptamer leads to an increase in fluorescence intensity. The limit of detection of thrombin and PSA reaches 57 × 10?18 and 0.032 × 10?18m , respectively. In addition, the pyramid also exhibits great target specificity. The results of human serum target detection demonstrate that the Au‐UCNP pyramid is an excellent choice for the quantitative determination of cancer biomarkers, and is feasible for the early diagnosis of cancer.  相似文献   

8.
Active surface-enhanced Raman scattering (SERS) substrates, 3D nano-arrays of Ag nanoparticles (NPs) and graphene quantum dots (GQDs), were prepared using a photochemical approach and an electrophoresis deposition technique with the formation mechanism addressed. The GQDs (ca. 6?nm average) fit into the inter-particle gaps between Ag NPs, as verified by their scanning electron microscopy and high-resolution transmission electron microscopy. This deliberately designed 3D assembly of Ag NPs and GQDs could promote the synergistic effects of both components to further enhance the SERS performances according to both electromagnetic mechanism and chemical mechanism. Preliminary experiments show that the 3D substrates exhibited strong SERS signals comparing with bare Si substrates. This work provides a promising way for 3D SERS substrates.  相似文献   

9.
A reliable method to prepare a surface‐enhanced Raman scattering (SERS) active substrate is developed herein, by electrodeposition of gold nanoparticles (Au NPs) on defect‐engineered, large area chemical vapour deposition graphene (GR). A plasma treatment strategy is used in order to engineer the structural defects on the basal plane of large area single‐layer graphene. This defect‐engineered Au functionalized GR, offers reproducible SERS signals over the large area GR surface. The Raman data, along with X‐ray photoelectron spectroscopy and analysis of the water contact angle are used to rationalize the functionalization of the graphene layer. It is found that Au NPs functionalization of the “defect‐engineered” graphene substrates permits detection of concentrations as low as 10?16 m for the probe molecule Rhodamine B, which offers an outstanding molecular sensing ability. Interestingly, a Raman signal enhancement of up to ≈108 is achieved. Moreover, it is observed that GR effectively quenches the fluorescence background from the Au NPs and molecules due to the strong resonance energy transfer between Au NPs and GR. The results presented offer significant direction for the design and fabrication of ultra‐sensitive SERS platforms, and also open up possibilities for novel applications of defect engineered graphene in biosensors, catalysis, and optoelectronic devices.  相似文献   

10.

This research constructed and utilized a screen-printed electrode (SPE) modified with V2O5 nanoparticles (NPs) (V2O5/SPE) employed in order to sensitively and selectively quantify ciprofloxacin with exceptional accuracy in the phosphate buffer solution (PBS) with the use of differential pulse voltammetry (DPV). Moreover, electrochemical properties of this new V2O5/SPE sensor have been examined using diverse characterization procedures. Very good V2O5/SPE electrochemical features offered sensitive ciprofloxacin voltammetric determination with the reduced limit of detection (LOD?=?0.01 µM) toward electrocatalytic oxidation of ciprofloxacin in comparison with the bare SPE. Finally, this new disposable sensor exhibited higher sensitivity and thus has been efficiently utilized to determine ciprofloxacin in the real samples.

  相似文献   

11.
《材料科学技术学报》2019,35(10):2207-2212
Paper-based flexible surface-enhanced Raman scattering (SERS) chips have been demonstrated to have great potential for future practical applications in point-of-care testing (POCT) due to the potentials of massive fabrication, low cost, efficient sample collection and short signal acquisition time. In this work, common filter paper and Ag@SiO2core-shell nanoparticles (NP) have been utilized to fabricate SERS chips based on shell‐isolated nanoparticle‐enhanced Raman spectroscopy (SHINERS). The SERS performance of the chips for POCT applications was systematically investigated. We used crystal violet as the model molecule to study the influence of the size of the Ag core and the thickness of the SiO2coating layer on the SERS activity and then the morphology optimized Ag@SiO2core-shell NPs was employed to detect thiram. By utilizing the smartphone as a miniaturized Raman spectral analyzer, high SERS sensitivity of thiram with a detection limit of 10−9M was obtained. The study on the stability of the SERS chips shows that a SiO2shell of 3 nm can effectively protect the as-prepared SERS chips against oxidation in ambient atmosphere without seriously weakening the SERS sensitivity. Our results indicated that the SERS chips by SHINERS had great potential of practical application, such as pesticide residues detection in POCT.  相似文献   

12.
The focusing of plasmons to obtain a strong and localized electromagnetic‐field enhancement for surface‐enhanced Raman scattering (SERS) is increasing the interest in using plasmonic devices as molecular sensors. In this Full Paper, we report the successful fabrication and demonstration of a solid‐state plasmonic nanoslit–cavity device equipped with nanoantennas on a freestanding thin silicon membrane as a substrate for SERS. Numerical calculations predict a strong and spatially localized enhancement of the optical field in the nanoslit (6 nm in width) upon irradiation. The predicted enhancement factor of SERS was 5.3 × 105, localized in an area of just 6 × 1.5 nm2. Raman spectroscopy and imaging confirm an enhancement factor of ≈106 for SERS from molecules chemisorbed at the nanoslit, and demonstrate the electromagnetic‐field‐enhancing function of the plasmonic nanoantennas. The freestanding membrane is open on both sides of the nanoslit, offering the potential for through‐slit molecular translocation studies, and opening bright new perspectives for SERS applications in real‐time (bio)chemical analysis.  相似文献   

13.
In this study, the evolution of interfacial microstructures and mechanical properties of the joints soldered with Sn–0.3Ag–0.7Cu (SAC0307) and SAC0307-0.12Al2O3 nanoparticles (NPs) aged at 150 °C for different hours (72–840 h) were investigated. It was found the joint soldered with SAC0307-0.12Al2O3 displayed a significantly enhanced high-temperature joint reliability, reflected in a higher shear force than that of the original. This enhancement in shear force primarily benefited from the refinement in solder microstructure contributed by Al2O3 NPs. As aging time reached 840 h, a controlled growth of interfaical IMC layer resulted from the pinning effect of Al2O3 NPs contributed to the increase in shear force. Theoretical analysis showed 0.12 wt% Al2O3 NPs effectively lowered the growth constant of total interfacial IMCs (DT) from 3.19?×?10?10 to 1.02?×?10?10 cm2 s?1. Moreover, comparative studies on the corrosion resistances of SAC0307 and SAC0307-0.12Al2O3 were also conducted by electrochemical test and analyzed by electrochemical impedance spectroscopy (EIS). The results revealed SAC0307-0.12 Al2O3 solder displayed a stronger corrosion resistance (Rt; ~?3.1 kΩ cm2 vs?~?7.1 kΩ cm2). This is also related with the tailored microstructure, which provides more grain boundaries for the initial nucleation of passive film.  相似文献   

14.
In this study, we report a facile synthesis of silver nanoparticle having SERS and antimicrobial activity using bacterial exopolysaccharide (EPS). Bacillus subtilis (MTCC 2422) was grown in nutrient broth and the extracellular EPS secreted by the organism was extracted and purified. The purified EPS was used for the synthesis of silver nanoparticles. The kinetics of silver nanoparticle synthesis was deduced by varying the exposure time and the concentration of EPS. The rate constant (k) for the synthesis of silver nanoparticle was calculated from the slope of ln(A ? At) versus time plot. The k value was found to be 3.49 × 10?3, 5.81 × 10?3 and 5.03 × 10?3 per min for particle synthesis using 2, 5 and 10 mg/mL EPS, respectively. The nanoparticles synthesised had an average particle size of 5.18 ± 1.49 nm, 1.96 ± 0.77 nm and 2.08 ± 0.88 nm for 2, 5 and 10 mg/mL EPS, respectively. The synthesised particles were characterised using UV-Vis absorbance spectroscopy, high-resolution transmission electron microscopy (HRTEM) attached to EDS (energy dispersive spectroscopy), Fourier transform infrared spectroscopy (FTIR), surface enhanced Raman spectroscopy (SERS) and zeta potential analyser. To our knowledge, this is the first study to report SERS activity of microbial Bacillus subtilis EPS-based synthesis of silver nanoparticle. HRTEM images showed silver nanoparticle entrapped in polysaccharide nanocages. Silver nanoparticle showed higher adherence towards the bacterial surface, with good bactericidal activity against Pseudomonas aeroginosa and Staphylococcus aureus.  相似文献   

15.
Plasmonic nanostructures have raised the interest of biomedical applications of surface-enhanced Raman scattering (SERS). To improve the enhancement and produce sensitive SERS probes, porous Au–Ag alloy nanoparticles (NPs) are synthesized by dealloying Au–Ag alloy NP-precursors with Au or Ag core in aqueous colloidal environment through galvanic replacement reaction. The novel designed core–shell Au–Ag alloy NP-precursors facilitate controllable synthesis of porous nanostructure, and dealloying degree during the reaction has significant effect on structural and spectral properties of dealloyed porous NPs. Narrow-dispersed dealloyed NPs are obtained using NPs of Au/Ag ratio from 10/90 to 40/60 with Au and Ag core to produce solid core@porous shell and porous nanoshells, having rough surface, hollowness, and porosity around 30–60%. The clean nanostructure from colloidal synthesis exhibits a redshifted plasmon peak up to near-infrared region, and the large accessible surface induces highly localized surface plasmon resonance and generates robust SERS activity. Thus, the porous NPs produce intensely enhanced Raman signal up to 68-fold higher than 100 nm AuNP enhancement at single-particle level, and the estimated Raman enhancement around 7800, showing the potential for highly sensitive SERS probes. The single-particle SERS probes are effectively demonstrated in quantitative monitoring of anticancer drug Doxorubicin release.  相似文献   

16.
Sun Y  Wei G  Song Y  Wang L  Sun L  Guo C  Yang T  Li Z 《Nanotechnology》2008,19(11):115604
Silver nanoparticles (Ag NPs) are one of the active substrates that are employed extensively in surface-enhanced Raman scattering (SERS), and aggregations of Ag NPs play an important role in enhancing the Raman signals. In this paper, we fabricated two kinds of SERS-active substrates utilizing the electrostatic adsorption and superior assembly properties of type I collagen. These were collagen-Ag NP aggregation films and nanoporous Ag films. Two probe molecules, 4-aminothiophenol (4-ATP) and methylene blue (MB), were studied on these substrates. These substrates showed reproducible SERS intensities with relative standard deviations (RSDs) of 8-10% and 11-14%, respectively, while the RSDs of the traditional thick Ag films were 12-28%. Also, the intensities for the 4-ATP spectrum on the collagen-templated nanoporous Ag film were approximately one order higher than those on the DNA-templated Ag?film.  相似文献   

17.
A preconcentrating surface‐enhanced Raman scattering (SERS) sensor for the analysis of liquid‐soaked tissue, tiny liquid droplets and thin liquid films without the necessity to collect the analyte is reported. The SERS sensor is based on a block‐copolymer membrane containing a spongy‐continuous pore system. The sensor's upper side is an array of porous nanorods having tips functionalized with Au nanoparticles. Capillarity in combination with directional evaporation drives the analyte solution in contact with the flat yet nanoporous underside of the SERS sensor through the continuous nanopore system toward the nanorod tips where non‐volatile components of the analyte solution precipitate at the Au nanoparticles. The nanorod architecture increases the sensor surface in the detection volume and facilitates analyte preconcentration driven by directional solvent evaporation. The model analyte 5,5′‐dithiobis(2‐nitrobenzoic acid) can be detected in a 1 × 10?3m solution ≈300 ms after the sensor is brought into contact with the solution. Moreover, a sensitivity of 0.1 ppm for the detection of the dissolved model analyte is achieved.  相似文献   

18.
It is very challenging to accurately quantify the amounts of amyloid peptides Aβ40 and Aβ42, which are Alzheimer's disease (AD) biomarkers, in blood owing to their low levels. This has driven the development of sensitive and noninvasive sensing methods for the early diagnosis of AD. Here, an approach for the synthesis of Ag nanogap shells (AgNGSs) is reported as surface‐enhanced Raman scattering (SERS) colloidal nanoprobes for the sensitive, selective, and multiplexed detection of Aβ40 and Aβ42 in blood. Raman label chemicals used for SERS signal generation modulate the reaction rate for AgNGSs production through the formation of an Ag‐thiolate lamella structure, enabling the control of nanogaps at one nanometer resolution. The AgNGSs embedded with the Raman label chemicals emit their unique SERS signals with a huge intensity enhancement of up to 107 and long‐term stability. The AgNGS nanoprobes, conjugated with an antibody specific to Aβ40 or Aβ42, are able to detect these AD biomarkers in a multiplexed manner in human serum based on the AgNGS SERS signals. Detection is possible for amounts as low as 0.25 pg mL?1. The AgNGS nanoprobe‐based sandwich assay has a detection dynamic range two orders of magnitude wider than that of a conventional enzyme‐linked immunosorbent assay.  相似文献   

19.
A yolk–shell Fe/Fe4N@Pd/C (FFPC) nanocomposite is synthesized successfully by two facile steps: interfacial polymerization and annealing treatment. The concentration of Pd2+ is the key factor for the density of Pd nanoparticles (Pd NPs) embedded in the carbon shells, which plays a role in the oxygen reduction reaction (ORR) and surface‐enhanced Raman scattering (SERS) properties. The ORR and SERS performances of FFPC nanocomposites under different concentrations of PdCl2 are investigated. The optimal ORR performance exhibits that onset potential and tafel slope can reach 0.937 V (vs reversible hydrogen electrode (RHE)) and 74 mV dec?1, respectively, which is attributed to the synergistic effects of good electrical conductivity, large electrochemically active areas, and strong interfacial charge polarization. Off‐axis electron holography reveals that interfacial charge polarization could facilitate the ORR of Pd NPs and defective carbon simultaneously and the shell with low density of Pd NPs is easier to form strong interfacial charge polarization. Moreover, FFPC‐3 with maximum EF of 2.3 × 105 results from more hot‐spots, local positive charge centers to attract rhodamine 6G molecules, and magnetic cores. This work not only offers a recyclable multifunctional nanocomposite with excellent performance, but also has instructional implications for interfacial engineering for electrocatalysts design.  相似文献   

20.
Optical theranostic applications demand near‐infrared (NIR) localized surface plasmon resonance (LSPR) and maximized electric field at nanosurfaces and nanojunctions, aiding diagnosis via Raman or optoacoustic imaging, and photothermal‐based therapies. To this end, multiple permutations and combinations of plasmonic nanostructures and molecular “glues” or linkers are employed to obtain nanoassemblies, such as nanobranches and core–satellite morphologies. An advanced nanoassembly morphology comprising multiple linear tentacles anchored onto a spherical core is reported here. Importantly, this core‐multi‐tentacle‐nanoassembly (CMT) benefits from numerous plasmonic interactions between multiple 5 nm gold nanoparticles (NPs) forming each tentacle as well as tentacle to core (15 nm) coupling. This results in an intense LSPR across the “biological optical window” of 650?1100 nm. It is shown that the combined interactions are responsible for the broadband LSPR and the intense electric field, otherwise not achievable with core–satellite morphologies. Further the sub 80 nm CMTs boosted NIR‐surface‐enhanced Raman scattering (SERS), with detection of SERS labels at 47 × 10‐9 m , as well as lower toxicity to noncancerous cell lines (human fibroblast Wi38) than observed for cancerous cell lines (human breast cancer MCF7), presents itself as an attractive candidate for use as biomedical theranostics agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号