首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the present paper we have synthesized pristine and Sr doped SnO2 in order to prepare a selective ethanol sensor with rapid response–recovery time and good repeatability. Pristine as well as Sr (2, 4 and 6 mol%) doped SnO2 nanostructured powder was synthesized by using a facile co-precipitation method. The samples were characterized by TG–DTA, XRD, HR-TEM, SAED, FEG-SEM, SEM–EDAX, XPS, UV–Vis and FTIR spectroscopy techniques. The gas response performance of sensor towards ethanol, acetone, liquid petroleum gas and ammonia has been carried out. The results demonstrate that Sr doping in SnO2 systematically decreases crystallite size, increases the porosity and hence enhances the gas response properties of pristine SnO2 viz. lower operating temperature, higher ethanol response and better selectivity towards ethanol. The response and recovery time for 4 mol% Sr doped SnO2 thick film sensor at the operating temperature of 300 °C were 2 and 7 s, respectively.  相似文献   

2.
Pure and cerium (Ce) doped tin oxide (SnO2) thin films are prepared on glass substrates by jet nebulizer spray pyrolysis technique at 450 °C. The synthesized films are characterized by X-ray diffraction (XRD), scanning electron microscopy, energy dispersive analysis X-ray, ultra violet visible spectrometer (UV–Vis) and stylus profilometer. Crystalline structure, crystallite size, lattice parameters, texture coefficient and stacking fault of the SnO2 thin films have been determined using X-ray diffractometer. The XRD results indicate that the films are grown with (110) plane preferred orientation. The surface morphology, elemental analysis and film thickness of the SnO2 films are analyzed and discussed. Optical band gap energy are calculated with transmittance data obtained from UV–Visible spectra. Optical characterization reveals that the band gap energy is found decreased from 3.49 to 2.68 eV. Pure and Ce doped SnO2 thin film gas sensors are fabricated and their gas sensing properties are tested for various gases maintained at different temperature between 150 and 250 °C. The 10 wt% Ce doped SnO2 sensor shows good selectivity towards ethanol (at operating temperature 250 °C). The influence of Ce concentration and operating temperature on the sensor performance is discussed. The better sensing ability for ethanol is observed compared with methanol, acetone, ammonia, and 2-methoxy ethanol gases.  相似文献   

3.
Pure and Ho-doped In2O3 nanotubes (NTs) and porous nanotubes (PNTs) were successfully synthesized by conventional electrospinning process and the following calcination at different temperatures. X-ray diffractometry (XRD), thermogravimetric analysis (TGA), Raman spectrometer, energy-dispersive spectroscopy, scanning and transmission electron microscopy were carefully used to investigate the morphologies, structures and chemical compositions of these samples. Their sensing properties toward ethanol gas were studied. Compared with pure In2O3 NTs (response value is 17), pure In2O3 PNTs (response value is 20) demonstrated enhanced sensing characteristics. What’s more, the response of Ho-doped In2O3 PNTs sensors to 100 ppm ethanol was up to 60 at 240 °C, which increased three times more than that of the pure In2O3 PNTs. Additionally, the minimum concentration for ethanol was 200 ppb (response value is 2). The increased gas-sensing ability was attributed not only to the hollow and porous structure, but to the Ho dopant. Furthermore, Ho-doped In2O3 PNTs enable sensor to discriminate between ethanol and the other gas distinctly, particularly acetone that is usually indistinguishable from ethanol. Also, by analyzing XRD, TGA and Raman spectrometer, a possible formation mechanism of porous nanotubes and sensing mechanism were put forward.  相似文献   

4.
Thick films prepared with undoped nanometric SnO2 particles and with (Co, Nb, Fe)-doped SnO2 were studied with the purpose of developing oxygen and carbon monoxide gas sensors. The ceramic powders were obtained through the Pechini method. The morphological characteristics were studied with SEM and TEM, after which, they were subjected to sensitivity tests under different atmospheres. A correlation was established between the microstructure of the material, the effects of the additives, and the electrical behavior. The response of the sensor could be explained as the result of the characteristics of the intergranular potential barriers developed at intergrains. It was determined that the SnO2-doped films have a greater sensitivity between 200 °C and 350 °C.  相似文献   

5.
SnO2/graphene quantum dots (GQDs) nano-composites were prepared via solvothermal method (160 °C, 10 h), in which graphene quantum dots were synthesized from graphene oxide by one-step solvothermal method. The nano-composites were characterized by means of HRTEM, XRD, SEM, FTIR, XPS and N2 adsorption–desorption, respectively. The sensor devices were fabricated using SnO2/GQDs nano-composites as sensing materials. The effect of the GQDs content on the gas-sensing responses and the gas-sensing selectivity was investigated. The experimental results showed that the sensor based on SnO2/GQDs nano-composite (S-2) exhibited good response and good selectivity to acetone vapor. When operating at 275 °C, the responses of the sensor based on SnO2/GQDs nano-composite (S-2) to 1000 and 0.1 ppm acetone reached 120.6 and 1.3, respectively; the response time and the recovery time for 1000 ppm acetone were 17 and 13 s, respectively.  相似文献   

6.
Pure and Nd3+-doped tin oxide (SnO2) nanoparticles have been prepared by the sol–gel method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM, energy-dispersive spectroscopy and UV–visible spectroscopy. The XRD patterns of all the samples are identified as tetragonal rutile-type SnO2 phase which is further confirmed by TEM analysis. Neodymium doping introduces band gap narrowing in the prepared samples and enhances their absorption towards the visible-light region. The photocatalytic activity of all the samples was evaluated by monitoring the degradation of methylene blue solution under day light illumination and it was found that the photocatalytic activity significantly increases for the samples calcined at 600 than 400°C, which is due to the effective charge separation of photogenerated electron–hole pairs. The efficiency of photocatalysts was found to be related to neodymium doping percentage and calcination temperature.  相似文献   

7.
SnO2 micromaterials were synthesized via hydrothermal method at a temperature of 200 °C for 24 h without employment of catalysts or surfactants. With the dosage of the precursor (SnCl4) increasing, variable microstructures of SnO2, ophiopogon japonicas-like micrograsses, microcones, microflowers and microcorals, were obtained. The as-prepared SnO2 samples were characterized by X-ray diffraction (XRD), scanning electron microscope and energy dispersive spectrometer respectively. XRD results indicated the as-grown SnO2 samples have a tetragonal rutile structure. Among those different morphologies, micrograsses SnO2 exhibited the best field emission performance with a low turn-on field of 1.05 V/µm and a high field enhancement factor of 3880. The results are quite comparable to reported data and strongly imply the micrograsses SnO2 is a potential material for fabricating efficient emitters of display devices and vacuum electronics.  相似文献   

8.
This work demonstrates the combined effect of nano-TiO2 decoration and UV radiation on the ethanol sensing of ZnSnO3 hollow microcubes. TiO2-decorated ZnSnO3 samples were synthesized by a facile co-precipitation method, followed by the calcination treatment of precursor–dehydration. The morphology and structure of the as-prepared samples were further characterized by XRD, EDS, SEM and TG analysis. Obtained samples were fabricated to thick film gas sensors for ethanol detection. Sensing tests showed a strong influence of TiO2 decoration on the sensing properties. Light excitation by means of a low-powered UV source (365 nm) has been used to reinforce the sensor performance especially at lower operating temperature. The optimal sensor based on TiO2-decorated ZnSnO3 showed promising performance towards ethanol, ensuring high response and fast dynamics at operating temperature as low as 80?°C.  相似文献   

9.
Synthesized nanophase SnO2 powder was used as a functional material along with optimized 15 wt% of glass, fired at 550 °C for better adhesion, to fabricate thick films using screen printing on alumina substrate. Their surface was modified by dip coating in platinum chloride solution (PtCl2) of different molarities (0.05–0.2 M). A subsequent thermal treatment to these thick films was carried out at an optimized temperature of 750 °C in air atmosphere. The films were tested for 400 ppm concentration of H2, CO and LPG. Sensors dip coated with 0.15 M solution of PtCl2 show the highest sensitivity towards the test gases which is ten times higher than undoped SnO2 sensors.XRD, EDX and SEM measurements showed that the behavior could be associated with the spatial distribution of the platinum within the tin oxide film. The sensors have fast response time of 10 s to all the three gases with a minimum detection limit of 10 ppm.  相似文献   

10.
Nanocrystalline La1−x Co x Mn1−y Ni y O3 (x = 0.2 and 0.4; y = 0.1, 0.3, and 0.5) thick films sensors prepared by sol–gel method were studied for their H2S gas sensitivity. The structural and morphological properties have been carried out by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Average particle size estimated from XRD and TEM analyses was observed to be 30–35 nm. The gas response characteristics were found to depend on the dopants concentration and operating temperature. The maximum H2S gas response of pure LaMnO3 was found to be at 300 °C. In order to improve the gas response, material doped with transition metals Co and Ni on A- and B-site, respectively. The La0.6Co0.4Mn0.5Ni0.5O3 shows high response towards H2S gas at an operating temperature 250 °C. The Pd-doped La0.6Co0.4Mn0.5Ni0.5O3 sensor was found to be highly sensitive to H2S at an operating temperature 200 °C. The gas response, selectivity, response time and recovery time were studied and discussed.  相似文献   

11.
Nanometric V-doped particles with vanadium concentration varying from 0 to 10% were prepared using the polyol method. The influence of the doping on the textural, structural and optical properties was studied by various methods of characterization. X-ray diffraction (XRD) patterns disclose that nanocrystallites of cassiterite, i.e. rutile-like tetragonal structure SnO2 and the absence of a new vanadium phase in the XRD pattern in the different concentration of doping were formed after annealing, the ordinary crystallite size decreased from 20.6 to 12.3 when the doping concentration increased from 0 to 10%, respectively. Moreover, the N2 sorption porosimetry and transmission electron microscopic show that all samples synthesized were constituted of an aggregated network of almost spherical nanoparticles, which sizes changed with the altitude in the doping concentration to 10%. In accordance with UV–visible absorption measurements, this diminution of nanoparticles sizes was followed by a decrease in the band gap value from 3.25 eV, for undoped SnO2, to 2.75 eV, for SnO2 doped at 10%. On the other part, the photocatalytic activity of undoped and V-doped SnO2 nanoparticles was studied using methylene blue (MB) as model organic pollutants. The SnO2 nanoparticles doped at 10% of vanadium disclosed that the discoloration of MB reached 97.4% after irradiation of 120 min, with an apparent constant rate of the degradation reaching 0.035 min?1 for MB degradation that was about 2.5 times more than that of pure SnO2 (0.014 min?1).  相似文献   

12.
A simple gel to crystal conversion route has been followed for the preparation of nanocrystalline SnO2 at 80–100°C under refluxing conditions. Freshly prepared stannic hydroxide gel is allowed to crystallize under refluxing and stirring conditions for 4–6 h. Formation of nano crystallites of SnO2 is confirmed by X-ray diffraction (XRD) study. Transmission electron microscopic (TEM) investigations revealed that the average particle size is 30 nm for these powders.  相似文献   

13.
In this work, SnO2 thin films were deposited onto alumina substrates at 350°C by spray pyrolysis technique. The films were studied after annealing in air at temperatures 550°C, 750°C and 950°C for 30 min. The films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and optical absorption spectroscopy technique. The grain size was observed to increase with the increase in annealing temperature. Absorbance spectra were taken to examine the optical properties and bandgap energy was observed to decrease with the increase in annealing temperature. These films were tested in various gases at different operating temperatures ranging from 50–450°C. The film showed maximum sensitivity to H 2S gas. The H2S sensing properties of the SnO2 films were investigated with different annealing temperatures and H 2S gas concentrations. It was found that the annealing temperature significantly affects the sensitivity of the SnO2 to the H 2S. The sensitivity was found to be maximum for the film annealed at temperature 950°C at an operating temperature of 100°C. The quick response and fast recovery are the main features of this film. The effect of annealing temperature on the optical, structural, morphological and gas sensing properties of the films were studied and discussed.  相似文献   

14.
Zirconium doped tin oxide (SnO2:Zr) nanopowders were synthesized by a simple soft chemical route adding various concentrations of zirconyl chloride (0, 5, 10 and 15 wt%). The samples were characterized by techniques like XRD, SEM, TEM, EDX, FTIR spectroscopy, UV–Vis-NIR spectroscopy and photoluminescence spectroscopy. XRD studies confirm that all the samples exhibit rutile tetragonal crystal structure with a strong (1 0 1) preferential growth texture. Hexagonal shaped grains were evinced from the SEM images. Nanosized grains are evinced from the TEM images and EDX spectra confirm the presence of Zr in the doped samples. The bands at 523 and 583 cm?1 observed in the FTIR spectra which are attributed as the characteristics of γ (Sn–OH) terminal bond of the SnO2 crystalline phase confirm the presence of Sn–O in the synthesized samples. The doped samples exhibit ferromagnetic behavior. Enhanced antibacterial activity was observed for the doped samples. The obtained results show that zirconium strongly influenced the structural, morphological, optical, magnetic and antibacterial properties of pure SnO2 nanopowders.  相似文献   

15.
In the present study, different catalysts (∼ 10 nm thick) including metals, noble metals and metal oxides, were loaded in dotted island form over SnO2 thin film for LPG gas detection. A comparison of various catalysts indicated that the presence of platinum dotted islands over SnO2 thin film deposited by r.f. sputtering exhibited enhanced response characteristics with a high sensitivity, ∼ 742, at an operating temperature of ∼ 280°C. Different characterization techniques have been employed such as atomic force microscopy, X-ray diffraction and UV-vis spectroscopy, to study the surface morphology, grain size and optical properties of the deposited thin films. The results suggest the possibility of utilizing the sensor element with the present novel method of catalyst dispersal for the efficient detection of LPG.  相似文献   

16.
In the present work, solid-state reaction and sol–gel route derived pure tin oxide (SnO2) powders have been used to develop the palladium (Pd)-doped SnO2 thick film sensors for detection of liquefied petroleum gas (LPG). Efforts have been made to study the gas sensing characteristics i.e., sensor response, response/recovery time and repeatability of the thick film sensors. The response of the sensors has been investigated at different operating temperatures from 200 to 350 °C in order to optimise the operating temperature which yields the maximum response upon exposure to fixed concentration of LPG. The optimum temperature is kept constant to facilitate the gas sensing characteristics as a function of the various concentration (0.25–5 vol%) of LPG. The structural and microstructural properties of Pd-doped SnO2 powder and developed sensors have been studied by performing X-ray diffraction and field emission electron microscopy measurements. The improvement in the response along with better response and recovery time have been correlated to the reduction in crystallite size of SnO2 powder and morphology of printed sensor in thick film form. It is found that the thick film sensor developed by using sol–gel route derived SnO2 powder with an optimum doping of 1 wt% Pd is extremely sensitive (86 %) to LPG at 350 °C.  相似文献   

17.
This paper reports the synthesis of SnO2-CuO, SnO2-Fe2O3 and SnO2-SbO2 composites of nano oxides and comparative study of humidity sensing on their electrical resistances. CuO, Fe2O3 and SbO2 were added within base material SnO2 in the ratio 1: 0.25, 1: 0.50 and 1: 1. Characterizations of materials were done using SEM and XRD. SEM images show the surface morphology and X-ray diffraction reveals the nanostructure of sensing materials. The pellets were annealed at 200, 400 and 600°C respectively for 3 h and after each step of annealing, observations were carried out. It was observed that as relative humidity (%RH) increases, there was decrease in the resistance of pellet for the entire range of RH. Results were found reproducible. SnO2-SbO2 shows maximum sensitivity for humidity (12 MΩ/%RH) among other composites.  相似文献   

18.
SnO2 photocatalyst was successfully synthesised by novel chemical route in hydrothermal environment and annealed at two different temperatures viz 550 and 600 °C, respectively. The crystal structure, optical properties, surface and bulk morphology have been characterised using various tools like X-ray diffraction (XRD), UV visible spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscope (TEM) and scanning electron microscope (SEM). Cubic, spheres and porous like morphology of SnO2 photocatalyst was successfully confirmed using SEM micrographs and TEM. In addition to this the photocatalytic activity was evaluated towards the degradation of methylene blue dye solution. SnO2 photocatalyst annealed at 600 °C exhibits excellent photocatalytic efficiency which may be attributed to the unique morphology, high crystalline nature and charge separation. The photocatalyst efficiency was further tested towards the concentration of dye, catalyst dosage and pH of the dye. The involvement of ?OH in the photocatalytic reaction was evidenced using trapping experiment by employing different scavengers. The photocatalyst was moderately active, stable upto its fifth usage and stability of the photocatalyst before and after the photocatalytic reaction was also been studied using XRD and SEM.  相似文献   

19.
We report the synthesis of mesoporous SnO2 nanoparticles by a microwave assisted hydrothermal process and their application as a gas sensor. The synthesized materials were characterized by transmission electron microscopy, X-ray diffraction technique, X-ray photoelectron spectroscopy, and Photoluminescence spectroscopy. As the results, we found that as-synthesized SnO2 was synthetic Cassiterite with tetragonal structure and spherical in shape with the primary crystallite size of 6–8 nm, and the SnO2 embedded material was mesoporous with average pore sizes of ≈15 nm. Moreover, this material showed excellent thermal stability from 80 to 800 °C and its crystal structure after heat treatment was preserved even at ultrahigh temperature of 800 °C. We demonstrated that this material could be used for detection of the ethanol gas because of its stability and nanoscale size at high temperature. Additionally our investigations also suggest that the processed materials can be used for the photocatalytic oxidation of ethanol. These results propose the potential application of the material for a sense and shoot kind of approach for indoor air purification in pharmaceutical and fermentation monitoring and vehicular control through breath analyzer.  相似文献   

20.
Cubic crystalline Mg2SnO4 nano particles (NPs) were prepared by the facile hydrothermal method and NaOH used as a mineralizer. The synthesized product was calcinated at different temperatures and sample calcinated at 900?°C was optimized by using XRD and TG/DT analysis. XRD result confirms that the Mg2SnO4 NPs has cubic phase with lattice space group of Fd3m with mean crystalline size of 26 nm. The sample calcinated at 900?°C was further characterized by FE-SEM with EDS, HR-TEM with SAED pattern, DLS and Cyclic Voltammetry. The effect of calcination temperature on the formation of Mg2SnO4 NPs as well as the particle size and crystalline structure were observed. The surface morphology of the sample indicates that the NPs were in irregular cubic shape and EDS analysis revealed the presence of the Mg, Sn, and O. Zeta potential depicts good stability of the sample and a specific capacitance value of 328 Fg?1 was observed which suggests that Mg2SnO4 NPs could be a potential candidate for super capacitor applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号