首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ZnS:Mn2+ quantum dots (QDs) Fe3O4 QDs/SiO2/P(NIPAAm-co-AAm) core-shell-shell nanocomposites have been successfully fabricated by free radical polymerization method. The average diameter and LCST of ZnS:Mn2+ QDs Fe3O4 QDs/SiO2/P(NIPAAm-co-AAm) (NIPAAm:AAm=90:10) nanocomposites was about 200?nm and 41.1°. It possessed a strong yellow-orange emission peak centered at 589?nm from the Mn2+ 4T1-6A1 transition and the desired superparamagnetic property at room temperature. The DOX encapsulation efficiency and loading capacity was 88% and 15.3 wt%, respectively. The nanocomposites showed the faster drug release behavior at 43?°C than that at 25?°C in vitro release experiment, and exhibited no significant cytotoxicity against the HeLa, HepG2 and HEK293 cell lines. Red fluorescence was observed in the cytoplasm of HeLa cells, confirming its application for biolabeling. Effective tumor inhibition was realized in vivo without the induction of toxicity in mice.
ZnS:Mn2+ (QDs) Fe3O4 QDs/SiO2/P(NIPAAm-co-AAm) nanocomposites showed the red fluorescence in the cytoplasm of HeLa cells, faster drug release behavior at 43?°C than that at 25?°C in vitro, and effective tumor inhibition in vivo, confirming its application for drug delivery.
  相似文献   

2.
ZnS:Mn2+ quantum dots (QDs)/SiO2 nanocomposites were successfully synthesized by stöber method. The results showed that the Mn2+ ions were substitutionally incorporated into the ZnS host and the average size of the ZnS:Mn2+ (5 %) QDs was about 5.5 nm. The yellow–orange emission from the Mn2+ 4T16A1 transition was observed in the photoluminescence spectra, the peak intensity increased as the Mn2+ doped ratio increased, and showed a maximum when the concentration of the Mn2+ ions kept at 3 %. As the hydrolysis time of tetraethyl orthosilicate increased, the intensity of the yellow–orange emission reached the highest value when t = 4 h for the ZnS:Mn2+ (5 %) QDs/SiO2 nanocomposites.  相似文献   

3.
Chitosan-encapsulated Mn2+ and Fe3+-doped ZnS colloidal quantum dots (QDs) were synthesized using chemical precipitation method. Though there are many reports on bio-imaging applications of ZnS QDs, the present study focussed on the new type of microbial-induced corrosive bacteria known as sulphate-reducing bacteria, Thiobacillus novellus. Sulphate-reducing bacteria can obtain energy by oxidizing organic compounds while reducing sulphates to hydrogen sulphide. This can create a problem in engineering industries. When metals are exposed to sulphate containing water, water and metal interacts and creates a layer of molecular hydrogen on the metal surface. Sulphate-reducing bacteria then oxidize the hydrogen while creating hydrogen sulphide, which contributes to corrosion for instance, in pipelines of oil and gas industries. In this study, detection and labelling of sulphate-reducing bacteria is demonstrated using fluorescent QDs. Chitosan capped ZnS QDs were synthesized using dopants at different doping concentrations. UV–Vis spectroscopy, XRD and FTIR characterizations were done to identify the optical band gap energy, crystal planes and determine the presence of capping agent, respectively. The morphology and the average particle size of 3.5 ± 0.2 nm were analysed using TEM which substantiated UV–Vis and XRD results. Photoluminescence spectroscopy detected the bacteria attachment to the QDs by showing significant blue shift in bacteria conjugated ZnS QDs. Fluorescence microscopy confirmed the fluorescent labelling of QDs to Thiobacillus novellus bacteria cells making them ideal for bio-labelling applications.  相似文献   

4.
High-quality ZnSe:Eu, Mn quantum dots (QDs) with white light emitting were synthesized via a green preparation method in an aqueous solution using thioglycolic acid as a stabilizing agent. The composition of the QDs could be flexibly controlled by varying the amount of Eu or Mn cation. The effects of reflux time and Eu2+ ion dopant concentration on the luminescence properties were systematically investigated. The obtained QDs were characterized by photoluminescence spectrometry, X-ray powder diffraction, and high-resolution transmission electron microscopy. The proposed method formed cubic ZnSe:Mn2+, Eu2+ QDs with the maximum emission peak at 460 and 580 nm. In the optimal condition, the quantum yields of ZnSe:Mn2+, Eu2+ QDs could reach 27.68%. The CIE color coordinates were (0.328, 0.334), which agreed with those of pure white light (0.33, 0.33). The results verified that the ZnSe:Mn2+, Eu2+ QDs exhibited potential in light-emitting diode applications.  相似文献   

5.
The effect of Mn2+ on the temperature coefficient of capacitance (TCC) of TiO2/SiO2-doped BaTiO3 ceramics has been investigated. The experiment has shown that the high temperature peak of TCC exhibited a continuous enhancement when Mn2+ concentration increased and X8R specification was gradually met. The secondary phase Ba2TiSi2O8 was found in all samples. SEM and XRD analyses have proved that Mn2+ could depress the crystallization of TiO2/SiO2 in BaTiO3 ceramics. The microstrain study through MAUD analysis depicted that the high temperature peak of TCC was dependent on the microstrain of samples to a certain extent. The Mn2+ could be a useful dopant for ameliorating the TCC of TiO2/SiO2-doped BaTiO3 ceramics. The text was submitted by the authors in English.  相似文献   

6.
Ce3+/Mn2+ singly doped and codoped Mg2Al4Si5O18 phosphors were synthesized by a solid state reaction. The phase, luminescent properties and thermal stability of the synthesized phosphors were investigated. Ce3+ and Mn2+ singly doped Mg2Al4Si5O18 phosphors show emission bands locating in blue and yellow–red regions, respectively. In Ce3+ and Mn2+ codoped Mg2Al4Si5O18, tunable luminescence was obtained because of the energy transfer from Ce3+ to Mn2+. In Mg2Al4Si5O18:Ce3+/Mn2+ phosphors with a fixed Ce3+ concentration, energy transfer efficiency increases with the increasing Mn2+ concentration, which is confirmed by the continually decreasing intensity and shortening decay time of Ce3+ emission. Moreover, the luminescent properties and thermal stability provide a great significance on the applications in the field of light emitting diodes.  相似文献   

7.
Zn2GeO4, Zn2GeO4:Mn2+, Zn2GeO4:Pr3+ and Zn2GeO4:Mn2+/Pr3+ phosphors were fabricated by a solid state reaction. The phase and luminescent properties of the fabricated phosphors were investigated. The XRD patterns show that all of the fabricated phosphors have an orthorhombic structure. The fabricated Zn2GeO4 shows an emission band in the range of 350–550 nm. The fabricated Zn2GeO4:Mn2+ and Zn2GeO4:Pr3+ phosphors show emission bands corresponding to Mn2+ and Pr3+ ions, respectively. The fabricated Zn2GeO4:Mn2+/Pr3+ phosphor shows the emission band results from Mn2+ and the codoped Pr3+ enhances the emission intensity of Mn2+. Moreover, Zn2GeO4:Mn2+/Pr3+ phosphor exhibits longer decay time than that of Zn2GeO4:Mn2+. The higher intensity and longer lifetime of Mn2+ emission are induced by the energy transfer from Pr3+ of various vacancies to Mn2+ in Zn2GeO4:Mn2+/Pr3+ phosphors.  相似文献   

8.
Novel water-based core/shell CdTeSe/ZnS quantum dots (QDs) were synthesized by aqueous method. The CdTeSe/ZnS QDs were investigated by high resolution transmission electron microscopy, energy dispersive spectrometry, UV–vis absorption spectra, and photoluminescence spectrum. The as-prepared QDs capped with ZnS shell were spherical in shape with an excellent quantum yield of 16% and emitted bright yellow light. In addition, the CdTeSe/ZnS QDs can be excited by blue or near-UV region, which is an advantage over wavelength converters for white light-emitting diodes (LEDs). White LEDs based on CdTeSe/ZnS QDs, commercially known as Y3Al5O12:Ce3+ (YAG:Ce), and hybrid phosphor of CdTeSe/ZnS QDs and YAG:Ce, were fabricated. The luminescent properties of the resultant white LEDs were evaluated. The higher red-component in the emission spectrum from CdTeSe/ZnS QDs increased the color rendering index (CRI) value of the commercial YAG:Ce-based white LEDs, and the hybrid phosphor-based white LED had CIE-1993 color coordinate, color temperature, and CRI values of (0.3125, 0.2806), 7108 K and 83.3, respectively.  相似文献   

9.
A series of Sr3La(PO4)3:Eu2+/Mn2+ phosphors were synthesized by a solid state reaction. The phase and the optical properties of the synthesized phosphors were investigated. The XRD results indicate that the doped Eu2+ and Mn2+ ions do not change the phase of Sr3La(PO4)3. The peak wavelengths of Eu2+ single doped and Eu2+/Mn2+ codoped Sr3La(PO4)3 phosphors shift to longer wavelength due to the larger crystal field splitting for Eu2+ and Mn2+. The increases of crystal field splitting for Eu2+ and Mn2+ are induced by the substitution of Sr2+ by Eu2+ and Mn2+ in Sr3La(PO4)3 host. Due to energy transfer from Eu2+ to Mn2+ in Sr3La(PO4)3:Eu2+/Mn2+ phosphors, tunable luminescence was obtained by changing the concentration of Mn2+. And the white light was emitted by Sr3La(PO4)3:3.0 mol%Eu2+/4.0 mol%Mn2+ and Sr3La(PO4)3:3.0 mol%Eu2+/5.0 mol%Mn2+ phosphors.  相似文献   

10.
Bi2–хLaхFe4O9 and Bi2Fe4–2xTixCoxO9 ferrites have been prepared by solid-state reactions at a temperature of 1073 K. X-ray diffraction data indicate that, in the Bi2–хLaхFe4O9 system, the limiting degree of La3+ substitution for Bi3+ ions in Bi2Fe4O9 does not exceed 0.05 and that the limiting degree of substitution in the Bi2Fe4–2xTixCoxO9 system lies in the range 0.05 < x < 0.1. The specific magnetization and specific magnetic susceptibility of the samples have been measured at temperatures from 5 to 300 K in a magnetic field of 0.86 T. The field dependences of magnetization obtained for the Bi2–хLaхFe4O9 and Bi2Fe4–2xTixCoxO9 ferrites at temperatures of 300 and 5 K demonstrate that partial isovalent substitution of La3+ for Bi3+ ions in Bi2Fe4O9 and heterovalent substitution of Ti4+ and Co2+ ions for two Fe3+ ions leads to partial breakdown of the antiferromagnetic state and nucleation of a ferromagnetic state.  相似文献   

11.
XRD-pure Li4Mn5O12 spinels are obtained below 600 °C from oxalate and acetate precursors. The morphology consists of nanometric particles (about 25 nm) with a narrow particle size distribution. HRTEM and electron paramagnetic resonance (EPR) spectroscopy of Mn4+ are employed for local structure analysis. The HRTEM images recorded on nano-domains in Li4Mn5O12 reveal its complex structure. HRTEM shows one-dimensional structure images, which are compatible with the (111) plane of the cubic spinel structure and the (001) plane of monoclinic Li2MnO3. For Li4Mn5O12 compositions annealed between 400 and 800 °C, EPR spectroscopy shows the appearance of two types of Mn4+ ions having different metal environments: (i) Mn4+ ions surrounded by Li+ and Mn4+ and (ii) Mn4+ ions in Mn4+-rich environment. The composition of the Li+, Mn4+-shell around Mn4+ mimics the local environment of Mn4+ in monoclinic Li2MnO3, while the Mn4+-rich environment is related with that of the spinel phase. The structure of XRD-pure Li4Mn5O12 comprises nano-domains with a Li2MnO3-like and a Li4/3−x Mn5/3+x O4 composition rather than a single spinel phase with Li in tetrahedral and Li1/3Mn5/3 in octahedral spinel sites. The annealing of Li4Mn5O12 at temperature higher than 600 °C leads to its decomposition into monoclinic Li2MnO3 and spinel Li4/3−x Mn5/3+x O4.  相似文献   

12.
We have studied the influence of monodisperse Ag/SiO2 core–shell-type nanoparticles with a core diameter of 17 nm and a dielectric-shell thickness within 0–40 nm on the photoluminescence of CdSe/ZnS quantum dots (QDs) excited by laser at a wavelength corresponding to the plasmon resonance in Ag/SiO2 nanoparticles. It is established that the intensity of QD luminescence in the composite system exhibits up to 8.7-fold increase.  相似文献   

13.
Polycrystalline samples of undoped, terbium-doped (CdB4O7:Tb3+), and manganese-doped (CdB4O7:Mn2+) cadmium tetraborate have been prepared by solid-state reactions at 850°C. Using differential scanning calorimetry and X-ray diffraction, we have determined the melting point of CdB4O7 (t m = 976°C) and shown that this compound melts incongruently. The observed monotonic decrease in the orthorhombic cell parameters of the doped materials indicates the formation of substitutional solid solutions (sp. gr. Pbca). The thermoluminescence intensity of the doped materials has been shown to depend on the nature and concentration of the activators and the irradiation time.  相似文献   

14.
We have developed a procedure for thermally stimulated synthesis of a cesium strontium metavanadate, Cs2Sr(VO3)4:Mn2+ (0.01, 0.50, 1.00, 5.00 at % Mn2+), using MnO-containing starting mixtures. The EPR spectrum of the material containing 0.01 at % Mn2+ shows a hyperfine structure due to the incorporation of a small amount of manganese into the diamagnetic double metavanadate host. The luminescent and optical properties of Cs2Sr(VO3)4:Mn2+ depend on manganese content. In contrast to higher doping levels, doping with 0.01 at % Mn2+ increases the integrated emission intensity of the vanadate by 10% and improves its chromaticity characteristics (approaching them to those of white light). We assume that this is due to the reduction in the density of vacancy-type growth defects, such as oxygen vacancies.  相似文献   

15.
The Mn2+, Yb3+, Er3+: ZnWO4 green phosphors are synthesized successfully through the high temperature solid state reaction method. The micro-structure and morphology have been investigated by means of XRD and EDS. The doped concentrations of Mn2+, Yb3+, Er3+ are measured by ICP. The absorption spectra and emission spectra with different doped concentrations of Mn2+ are presented to reveal the influence of Mn2+ on the green up-conversion performance. Excited with 970 nm LED, the up-conversion emission peak at 547 nm is obtained and the CIE spectra as well as the green light photo are also presented. The results indicate that the Mn2+ ions play the role of the luminescence adjustment in the up-conversion process, which can improve the up-conversion green emission intensity effectively. The luminescence adjustment mechanism of Mn2+ ions in Mn2+, Yb3+, Er3+: ZnWO4 green phosphors has been discussed. The crystal parameters of Dq, B and C are calculated to evaluate the energy level split effect.  相似文献   

16.
In this paper, Mn2+ and calcium borosilicate glass (CBS) were used as effective dopants to prepare environmentally friendly dielectric materials satisfying EIA X8R specification. The effects of various Mn2+ concentrations on the dielectric properties of BaTiO3 (BT) ceramics were investigated when CBS amount was fixed. The dielectric measurements showed that the permittivity was decreased continuously with increasing Mn2+ concentrations, resulted from the existence of paraelectric regions caused by Mn2+ doping. The dielectric loss was decreased at the beginning and then increased with increasing Mn2+ concentrations, whereas the resistivity showed an opposite movement. The SEM images and X-ray diffraction curves corresponding to BT ceramics doped with different Mn2+ amounts proved that Mn2+ can promote the crystallization of CBS glass to form the secondary phase Ca4Mn4Si8O24, which determines the intensity of the high temperature peak (at about 125 °C) of the variation rate curve of capacitance. Moreover, the modification effects of Mn2+ on the dielectric properties of BT have been investigated. It is revealed that a proper usage of Mn2+ can improve the dielectric properties significantly, and Mn2+ and CBS co-doped BT ceramics are promising to develop X8R MLCs.  相似文献   

17.
A facile and efficient approach for the fabrication of Fe3O4@TiO2 nanospheres with a good core–shell structure has been demonstrated. Products were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), X-ray diffraction (XRD) and vibrating sample magnetometer (VSM). The results showed that Fe3O4@TiO2 nanocomposites exhibited high degree of crystallinity, excellent magnetic properties at room temperature. Furthermore, the as-prepared Fe3O4@TiO2 nanocomposites exhibited good photocatalytic activity toward the degradation of Rhodamine B (RhB) solution. Additionally, the recycling experiment of Fe3O4@TiO2 nanocomposites had been done, demonstrating that Fe3O4@TiO2 nanocomposites have high efficiency and stability.  相似文献   

18.
Bifunctional magnetic-luminescent dansylated Fe3O4@SiO2 (Fe3O4@SiO2-DNS) nanoparticles were fabricated by the nucleophilic substitution of dansyl chloride with primary amines of aminosilane-modified Fe3O4@SiO2 core–shell nanostructures. The morphology and properties of the resultant Fe3O4@SiO2-DNS nanoparticles were investigated by transmission electron microscopy, FT–IR spectra, UV–vis spectra, photoluminescence spectra, and vibrating sample magnetometry. The Fe3O4@SiO2-DNS nanocomposites exhibit superparamagnetic behavior at room temperature, and can emit strong green light under the excitation of UV light. They show very low cytotoxicity against HeLa cells and negligible hemolysis activity. The T 2 relaxivity of Fe3O4@SiO2-DNS in water was determined to be 114.6 Fe mM−1 s−1. Magnetic resonance (MR) imaging analysis coupled with confocal microscopy shows that Fe3O4@SiO2-DNS can be uptaken by the cancer cells effectively. All these positive attributes make Fe3O4@SiO2-DNS a promising candidate for both MR and fluorescent imaging applications.  相似文献   

19.
Al3+/Mg2+ doped Y2O3:Eu phosphor was synthesized by the glycine-nitrate solution combustion method. In contrast to Y2O3:Eu which showed an irregular shape of agglomerated particles (the mean particle size >10 μm), the morphology of Al3+/Mg2+ doped Y2O3:Eu crystals was quite regular. Al3+/Mg2+ substituting Y3+ in Y2O3:Eu resulted in an obvious decrease of the particle size. Meanwhile, higher the Al3+/Mg2+ concentration, smaller the particle size. In particular, the introduction of Al3+ ion into Y2O3 lattice induced a remarkable increase of PL and CL intensity. While, for Mg2+ doped Y2O3:Eu samples, their PL and CL intensities decreased. The reason that causes the variation of PL and CL properties for Al3+ and Mg2+ doped Y2O3:Eu crystals was concluded to be related to sites of Al3+ and Mg2+ ions inclined to take and the difference of ion charge.  相似文献   

20.
(Bi0.9Ba0.1)(Fe0.95Mn0.05)O3 films were prepared on LaNiO3-coated surface oxidized Si substrates. XRD and Raman measurements confirm that the (Bi0.9Ba0.1)(Fe0.95Mn0.05)O3 film has pure R3c structure. Clear ferromagnetism with saturated magnetization of about 25 emu/cm3 has been observed at room temperature. The ferroelectric properties of the (Bi0.9Ba0.1)(Fe0.95Mn0.05)O3 film was confirmed by the observation of the ferroelectric domains and the converse piezoelectric coefficient d 33 versus applied voltage hysteresis loops by piezoelectric force microscopy (PFM). The observation of ferromagnetism and ferroelectricity in (Bi0.9Ba0.1)(Fe0.95Mn0.05)O3 films indicates the potential multiferroic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号