首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Titanium dioxide nanotube arrays (TiO2 NTAs) with rutile phase have been fabricated successfully via a two-step hydrothermal method. TiO2 nanorod arrays (TiO2 NRAs) are first hydrothermally grown on FTO substrate. Then the TiO2 NTAs can be obtained by controlling the HCl concentration of the hydrothermal etching process. The TiO2 NTAs have been characterized by X-ray diffractometer, scanning electron microscope, transmission electron microscopy, X-ray photoelectron spectroscopy, and ultraviolet–visible spectroscope. Evolution of TiO2 nanoarrays are accompanied by enhanced of the surface area and optical properties. Compared with TiO2 NRAs, the prepared TiO2 NTAs is more efficient in the photodegradation of methyl orange. These results reveal that the hydrothermal chemical etching provide a flexible and straightforward route for design and preparation of TiO2 NTAs, promising for new opportunities in photocatalysts and other fields.  相似文献   

2.
The highly ordered and uniform TiO2 nanotube arrays were fabricated by anodic oxidation method and PTh(polythiophene)/TiO2 nanotube arrays electrode were obtained by electrochemical polymerization. X-ray powder diffraction (XRD) analysis confirmed the formation of TiO2 phase. The morphologies and optical characteristics of the TiO2 nanotube arrays were studied by scanning electron microscope (SEM), UV-Vis absorption spectra and Raman spectra. The results demonstrate that the PTh/TiO2 electrode could enlarge the visible light absorption region and increase the photocurrent in visible region. The modified TiO2 electrode with light-to-electric energy conversion efficiency of 1·46%, the short-circuit current density of 4·52 mAcm − 2, open-circuit voltage of 0·74 V and fill factor of 0·44, were obtained.  相似文献   

3.
WO3/TiO2 nanotube array electrode was fabricated by incorporating WO3 with TiO2 nanotube array via a wet impregnation method using ammonium tungstate as the precursor. TiO2 and WO3/TiO2 nanotube arrays were characterized by field emission scanning electron microscopy, X-ray diffraction, and energy dispersive X-ray analysis. In order to characterize the photoelectrochemical properties of WO3/TiO2 electrode, electrochemical impedance spectroscopy, and steady-state photocurrent (i ss) measurement at a controlled potential were performed in the supporting electrolyte containing different concentrations of glucose. The photoelectrochemical characterization results reveal that WO3/TiO2 nanotube array electrode possesses a much higher separation efficiency of the photogenerated electron–hole pairs and could generate more photoholes on the electrode surface compared with the pure TiO2 nanotube array electrode. The i ss for glucose oxidation at WO3/TiO2 nanotube array electrode is much higher than that at the pure TiO2 nanotube array electrode.  相似文献   

4.
We report a facile electrochemical reduction method to synthesize Ti3+-self-doped TiO2 nanotube arrays (TNTs), where the effects of reduction duration and potential on the photoelectrochemical performance were systematically investigated. The X-ray photoelectron spectroscopy and electron paramagnetic resonance spectra confirmed the presence of Ti3+ in the TNTs. Under the optimum reduction condition, the Ti3+-self-doped TNTs exhibited remarkably enhanced photocurrent density and photoconversion efficiency, which were nearly 3.1 and 1.75 times that of pristine TNTs, respectively. The enhancement of PEC performance is due to the improved electrical conductivity, accelerated charge transfer rate at the TNTs/electrolyte interface, as well as the improved visible light response, which is elucidated by electrochemical impedance spectra, Mott–Schottky, and UV–Vis diffuse reflection spectra.  相似文献   

5.
Dye-sensitized solar cells (DSSCs) were fabricated using TiO2 mesoporous layers obtained by very simple method—transformation of TiO2 nanotube (NT) films grown by electrochemical oxidation to nanoparticle (NP) films. This transformation is based on thermal annealing of TiO2 NT arrays formed by anodization of titanium foil in fluorine ambient. Performance of DSSCs fabricated with different size NPs was studied in the range from 35 to 350 nm. Highest nominal efficiency (9.05%) was achieved for DSSC with NP size 65 nm while the lowest nominal efficiency (1.48%) was observed for DSSCs with NP size 350 nm. The dependence of the solar cell parameters with NP size is discussed.  相似文献   

6.
Single-crystal TiO2 nanorod arrays (NRAs) were synthesized successfully onto transparent conducting substrates through a facile hydrothermal route for photo-electrochemical (PEC) water-splitting. Further, the ordered TiO2 NRAs were treated by SbCl3 solution for preparing a layer of Sb2S3 and enhancing their PEC activity. A series of methods were employed to compare and analyze the differences between the TiO2 NRA samples with/without Sb2S3 decoration. It was demonstrated that the PEC performance were enhanced significantly after being treated with SbCl3 aqueous solution (precursor) under a hydrothermal environment. Compared to pure TiO2 NRAs, the sample that decorated with Sb2S3 showed a more positive flat-band level as well as a higher donor density (i.e. electron density). Thus, it suggested that the enhanced PEC performance after Sb2S3 modification might be attributed to the widening of spectral response as well as the improvement of charge transfer / transport occurring at the solid/liquid interfaces.  相似文献   

7.
TiO2 and TiO2:Fe thin films have been grown by electron beam evaporation and the influence of doping and heat treatment on their electrical and optical properties has been studied.  相似文献   

8.
Pure palladium membrane has been successfully fabricated by photocatalytic deposition in fluoride electrolysis bath on TiO2 nanotube arrays which was in situ grown by anodic oxidation on the surface of asymmetric home-made compressed porous titanium foils. Results of SEM, XRD and XPS show that the completed membrane is homogeneous and its thickness is about 0.5 μm. After 8 times thermal shock test, no shedding or crack is observed on this composite material, which shows the excellent hot crisp resistance.  相似文献   

9.
We have studied the surface morphology, interfaces, and structure of individual Co and TiO2 films 2 to 10 nm in thickness and those of Co/TiO2 multilayers up to 100 nm in thickness. Auger depth profiling and transmission electron microscopy results show that [Co(2 nm)/TiO2(2 nm)]15, [Co(2 nm)/TiO2(4 nm)]15, and [Co(4 nm)/TiO2(4 nm)]12 structures are composed of continuous layers well adherent to one another, with sharp interfaces. The conclusion is made that such multilayer structures can be used as model systems in designing magneto-optical and spintronic devices.  相似文献   

10.
Composites in the form of precipitated powders, hybrid xerogels, and SiO2 core/TiO2 shell particles have been produced via hydrolysis of precursors (alkoxides and inorganic derivatives of titanium and silicon) and have been characterized by differential thermal analysis, X-ray diffraction, adsorption measurements, and macroelectrophoresis. The results demonstrate that heat treatment of the composites leads to crystallization of the titanium-containing component and, accordingly, reduces their specific surface area. Hydrothermal treatment enables the fabrication of materials in which TiO2 nanocrystals are evenly distributed over an amorphous SiO2 matrix.  相似文献   

11.
The photoelectrochemical properties of TiO2, CdS, and TiO2/CdS anodes have been studied. The results demonstrate that, under illumination, CdS anodes are subject to photocorrosion, and Cd2+ ions pass into solution. Corrosion-resistant films of TiO2 prevent CdS photocorrosion, and the CdS/TiO2 system exhibits good photosensitivity in the visible range.  相似文献   

12.
In this study, preparation of Si and Cd co doped (5 mol% Si and 5–20 mol% Cd) TiO2 dip-coated thin films on glass substrates via sol–gel process have been investigated. The samples were characterized by X-ray diffraction (XRD) and Scanning electron microscopy analysis after heat treatments. XRD results suggested that adding dopants has a great effect on crystallinity and particle size of TiO2. Titania rutile phase formation was inhibited by Si4+ and promoted by Cd2+ doping. But the effect of Cd doped appeared at high concentration. Accordingly, the thin films showed various water contact angles. The water contact angles changed from 69.0° to 9.6° by changing the content of Cd doped.  相似文献   

13.
In this study, recent results from our electron, X-ray, and neutron-diffraction experiments with emphasis on the binary Bi1/2Na1/2TiO3-BaTiO3 (BNT–BT) and ternary Bi1/2Na1/2TiO3–BaTiO3–K0.5Na0.5NbO3 (BNT–BT–KNN) system are presented and contrasted with literature. The experimental results clearly revealed a phase coexistence on the nanoscale level. A systematic study of superlattice reflections in conjunction with microstructural characteristics showed that the BNT-based systems have specific properties in common, which, however, strongly depend on composition. In situ transmission electron microscopy (TEM) electric field experiments unequivocally demonstrated the evolution of lamellar domains. Combining in situ TEM results with published in situ neutron-diffraction experiments, we proposed an electric field-induced phase transition that results in the giant unipolar and bipolar strain observed in specific compositions of the ternary system.  相似文献   

14.
Sulfur-doped titanium dioxide (TiO2) was investigated as a potential catalyst for photoelectrochemical hydrogen generation. Three preparation techniques were used: first ballmilling sulfur powder with Degussa P25 powder (P25), second, ball milling thiourea with P25, and third a sol–gel technique involving titanium (IV) butoxide and thiourea. The resulting powders were heat-treated and thin-film electrodes were prepared. In all three cases, the heat-treated powders contained small amounts of S (1–3%). However, Rietveld analysis on X-ray diffraction (XRD) measurements revealed no significant changes in lattice parameters. For the samples prepared using thiourea, X-ray photoelectron spectroscopy (XPS) measurements indicated the presence of N and C in the heat-treated powders in addition to S. In all cases, visible-ultraviolet spectroscopy performed on bulk powders confirmed the extension of absorption into the visible region. However, the same spectroscopic technique performed on thin-film electrodes (∼0.5 μm) suggests that the absorption coefficients were very small in the visible region (≤104 m−1). The first and third methods yielded powders with substantially smaller photocatalytic activity relative to P25 powder in the UV region. The electrodes prepared from powders obtained using the second method yielded photocurrents comparable to those prepared from P25 powder.  相似文献   

15.
To meet the demand of electromagnetic absorption, cheap and easily available microwave absorbents are urgently required. As an important functional material, carbon fibers (CFs) have been widely reported, however, too high conductivity easily leads to the impedance mismatch, which is not favorable to the microwave absorbing performance (MAP). To address this challenge, in this study, novel TiO2/Fe3O4/CF composites with tunable magnetic were synthesized by hydrothermal method and characterized by SEM, XRD, XPS and VSM. As absorbents, the minimum reflection loss (RL) value is ??41.52 dB at a thickness of 2.1 mm, and the corresponding bandwidth with effective attenuation (RL?<???10 dB) is up to 5.65 GHz (4.54–10.19 GHz). More importantly, the plausible mechanisms for the enhanced MAP are explored.  相似文献   

16.
Both humans and objects can emit infrared (IR) wavelengths which generate thermal emissions that can be detected with an IR camera. Therefore, highly IR reflective materials have been the subject of interest recently, for example, in achieving IR stealth. In this work, IR reflective coatings on polyester fabric in the form of a titanium dioxide/copper/titanium dioxide (TiO2/Cu/TiO2; TCT) sandwich-like structure are fabricated by using magnetron sputtering. The coated fabric samples are then examined by using an energy dispersive X-ray detector, a scanning electron microscope and an X-ray diffractometer. The reflection of IR wavelengths which range from 8 to 14 µm of the TCT coated fabric is evaluated. The bending stiffness, and mechanical and adhesion strengths of the coated fabric samples are also investigated. The results show that the TCT sandwich-like structure on the polyester fabric sputtered for 30 min with Cu which results in a Cu film of 200 nm in thickness is observed to have the maximum reflection of IR wavelengths. The color of the TCT coated polyester fabric samples sputtered for 5, 10, 20, and 30 min with Cu is green, yellow, brown and purple, respectively. The TCT coated fabric therefore has potential applications as IR protection textiles for military purposes.  相似文献   

17.
The desired size of pure SnO2 and Co (1, 3, 5 mol%) with constant 5 mol% of Al co-doped into SnO2 nanoparticles are synthesized by chemical co-precipitation method. The raw materials used in synthesis are SnCl2.2H2O, AlCl3, Co (C2H3O2).4H2O, aqueous NH4OH and Polyethyleneglycol (PEG) from AR grade. The XRD pattern of pure and co-doped samples confirm the formation of tetragonal rutile phase of SnO2 nanoparticles with average particle size 25 and 20 nm respectively. Micrographs of scanning electron microscope (SEM) for pure and (Co, Al) co-doped into SnO2 show that the prepared nanoparticles are agglomerate and spherical in shape. The EDAX spectra of prepared nanoparticles indicate the presence of Co2+, Al3+, Sn4+ and O2+ and also confirm stoichiometric proportions of raw material in the formation of SnO2. Transmission electron microscope (TEM) reveals that the surface morphology of pure and co-doped samples are spherical, and average size of particles is ~20 nm. Magnetization measurements from M-H curves of VSM show that the ferromagnetism at low concentration of Co and at higher concentration of Co shows weak ferromagnetism due to super exchange coupling among neighboring ions. The bound magnetic polarons model supports the observed ferromagnetic behavior.  相似文献   

18.
In this work, we highlight the effect of TiO2 seed layer (SL) on the photoelectrochemical performances of CdSe/TiO2 photoanodes (PAs). TiO2 thin films were prepared by spin coating starting from a sol gel solution containing TiO2 nanopowder, then sensitized with electrodeposited CdSe nanoparticles. Structural, optical and photoelectrochemical properties of the CdSe/TiO2 PAs with and without the SL were investigated. Charge accumulation processes and charge transfer characteristics were identified by electrochemical impedance spectroscopy. The introduction of the compact TiO2 SL was found to significantly increase the electron transport. The photocurrent density produced by the CdSe/TiO2/SL PA reached 0.95 mA/cm2, about two times higher than that performed by the CdSe/TiO2 PAs. This enhancement might be attributed to a substantial decrease of the leakage current induced by a better crystallization of TiO2 thin films as well as a higher sensitizing effect of the CdSe nanoparticles.  相似文献   

19.
TiO2 nanorod arrays (TiO2 NRAs) were synthesized through a hydrothermal method. Ag2S and Bi2S3 were then grown on the surface of TiO2 NRAs with successive ionic layer adsorption and reaction method. The pristine rutile TiO2 NRAs, Ag2S/TiO2, Bi2S3/TiO2, and Bi2S3/Ag2S/TiO2 electrodes were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, ultraviolet–visible absorption spectroscopy, and electrochemical analysis. According to photoelectrochemical (PEC) measurement, an enhanced short circuit current density was obtained for the co-sensitized TiO2 NRAs under simulated sunlight illumination, which was 10.7 times higher than that of the TiO2 NRAs. Appropriate potential positions of conduction band and valence band of Bi2S3 that match well those of rutile TiO2 NARs and Ag2S lead to the improved PEC performance. In addition, the PEC property of the co-sensitized TiO2 NRAs under visible light irradiation was also investigated and showed a dramatically enhanced photocurrent response.  相似文献   

20.
Solid-state flexible energy storage devices play a crucial role in the development of wearable electronic textiles. In this study, we fabricated flexible asymmetric two-ply yarn supercapacitors from carbon nanotube yarns and surface-oxidized titanium filament. The crystalline structure of the TiO2 surface layer can be adjusted to amorphous, anatase and rutile states by altering the annealing temperature. The titanium filament with a rutile TiO2 surface layer produced at high annealing temperature showed far superior electrochemical performance over the filaments with amorphous and anatase TiO2 surface layers. The as-prepared asymmetric two-ply yarn supercapacitors in aqueous gel electrolyte can achieve a durable operating voltage up to 1.4 V, with a maximum energy density of 11.7 Wh kg?1 and a maximum power density of 2060 W kg?1. The asymmetric two-ply yarn supercapacitors exhibited excellent flexibility and cycling stability over 1200 cycles at straight, twisted and bent states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号