首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ceramic samples based on ZnTa2O6 and ZnTa2O6–MO2 (M = Ti, Zr) systems have been obtained by the solid state ceramic route. The phase composition and microstructure of samples were investigated. The effect of the aliovalent substitution of ions Zn2+ and Ta5+ by M4+ (M = Ti, Zr) in the structure of ZnTa2O6 on microwave dielectric properties of ceramics was studied. The way of the compensation of the positive temperature coefficient of resonant frequency of dielectric resonators based on ZnTa2O6 ceramics with using the aliovalent substitution of cations was proposed. Dielectric resonators with the high temperature stability of the resonant frequency and high dielectric properties in the microwave range based on the ZnTa2O6–ZrO2 system were obtained for application in electronics.  相似文献   

2.
K2Ti6O13/TiO2 bio-ceramic coatings are prepared successfully by micro-arc oxidation on titanium substrate in pure KOH electrolyte solution. The coating is prepared at various applied current density (150–500 mA/cm2) and in KOH electrolyte with different concentrations (0.5–1.2 mol/L). The composition and surface morphologies of coatings are strongly dependent on the applied current density and the electrolyte concentration. On the condition of lower current density and electrolyte concentration, K2Ti6O13 phase almost cannot be formed. The phase is mainly composed of rutile and K2Ti6O13 with increasing current density and electrolyte concentration. The surface morphologies are composed of whiskers and porous structures. The ability of K2Ti6O13/TiO2 bio-ceramic films inducing apatite deposition is evaluated by soaking it in biological model fluids. The results show the K2Ti6O13/TiO2 bio-ceramic coatings possess excellent capability of inducing bone-like apatite to deposit.  相似文献   

3.
Bluish green emitting phosphor, Ca3Al2O6:Ce3+, is prepared by low-temperature combustion method. X-ray diffraction, photoluminescence, scanning electron microscopy techniques are used to characterize the synthesized phosphor. The most efficient bluish green (483 nm) emission is observed under the excitation by near UV light. The emission characteristics are credited to 5d → 4f type transitions in Ce3+. The luminescence properties of Eu2+ are predicted for the first time from those of Ce3+. Also, photoluminescence of Eu3+ is studied in the same host. The emission spectrum of Ca3Al2O6:Eu3+ shows the peak at 592 (orange) and 614 nm (red) wavelengths. Ca3Al2O6:Ce3+phosphor can be a potential blue phosphor for field emission display, solid-state lighting and LED.  相似文献   

4.
The microstructure, electrical properties, and stability of the varistor ceramics, which are composed of ZnO-Pr6O11-CoO-Cr2O3-La2O3 (ZPCCL)-based ceramics, were investigated for various La2O3 contents. The increase of La2O3 content led to more densified ceramics, whereas abruptly decreased the nonlinear properties by incorporating beyond 1.0 mol%. The highest nonlinearity was obtained from 0.5 mol% La2O3, in which the nonlinear exponent is 81.6 and the leakage current is 0.1 μA. As the La2O3 content increases, the donor concentration and density of interface states were increased from 0.64×1018 to 16.89×1018/cm3 and from 2.21×1012 to 5.16×1012/cm2, respectively. However, the barrier height greatly decreased with increasing La2O3 content, reaching a maximum (1.47 eV) for 0.5 mol% La2O3.  相似文献   

5.
Empirical calculational approaches have been used to evaluate the enthalpy, entropy, heat capacity, and melting point of iron(II) niobate and iron(II) tantalate and the coefficients A, B, and C in an equation for the temperature dependence of their heat capacity. The melting point of FeTa2O6 has been experimentally determined to be 1891 ± 5 K. The calculated heat capacity (C°p (298.15 K)) of iron tantalate and the Gibbs energies of formation of FeN2O6 and FeTa2O6 have been compared to previously reported data.  相似文献   

6.
Strontium aluminates are important compounds with interesting properties such as long-duration phosphorescence and elastico-deformation luminescence. They have potential application in flexible light emitting panels. Since there are serious discrepancies in available thermodynamic data for these compounds, a redetermination of their Gibbs energies of formation was undertaken using solid-state electrochemical cells incorporating single-crystal SrF2 as the electrolyte in the temperature range from 1000 to 1300 K. However, the measurements were restricted to SrAl12O19 and SrAl4O7 because of the formation of strontium oxyfluoride phase between SrAl2O4 and SrF2. For the reactions, SrO + 6 Al2O3 → SrAl12O19, ΔG o/J mol?1 (± 280) = ?83386 ? 25.744 (T/K), and SrO + 2Al2O3 → SrAl4O7, ΔG o/J mol?1 (± 240) = ?80187 ? 25.376 (T/K). The high entropy of SrAl4O7 and SrAl12O19 can be partly related to their complex structures. The results of this study are consistent with calorimetric data on enthalpy of formation of other Sr-rich aluminates and indicate only marginal stability for SrAl4O7 relative to its neighbours, SrAl12O19 and SrAl2O4. The thermodynamic data explain the difficulty in direct synthesis of phase pure SrAl4O7 and the formation of SrAl2O4 as the initial ternary phase when reacting SrO and Al2O3 or crystallizing from amorphous state, irrespective of composition.  相似文献   

7.
We have prepared europium-doped BaO-Bi2O3-B2O3 glasses and investigated the doping effect on the main physicochemical properties and local structure of the glasses. Using Judd-Ofelt analysis, we calculated intensity parameters (Ω2, Ω4, and Ω6), spontaneous emission probabilities, the radiative lifetime, luminescence branching factors, the quantum yield of luminescence, and the stimulated emission cross sections for 5 D 07 F J transitions.  相似文献   

8.
The Ag-K2Nb2O6 nanocomposites are synthesized by a two-step method where the octahedral K2Nb2O6 is initially prepared by solvothermal reaction and then the Ag particles are anchored onto the surface of K2Nb2O6 through the photoreduction of AgNO3. The XRD, SEM, TEM, XPS, DRS are applied to characterize the structure, morphology and optical properties, which confirm that the Ag particles are successfully deposited on the surface of K2Nb2O6. Compared with the pure K2Nb2O6, the Ag modified K2Nb2O6 catalysts show an obvious enhancement catalysis under UV–Vis light, because that could efficiently promote the light absorption and the separation of photoelectrons and holes.  相似文献   

9.
Anisometric and agglomerate-free template particles are important for fabrication of grain-oriented ceramics. In the present work, preparation of acicular KSr2Nb5O15 (KSN) particles was firstly explored in the SrNb2O6–Nb2O5–KCl system by molten salt synthesis (MSS) method. It was found that the molar ratio of SrNb2O6 to Nb2O5, the amount of KCl salt and synthesis time could significantly affect the phase structure and morphology of KSN particles. When calcined at 1,150 °C for 6 h with the molar ratio of SrNb2O6 to Nb2O5 was 1 and the weight ratio of salt to oxide source was 1.50, pure KSN particles with well-developed acicular morphology were successfully obtained in this system. They were agglomerate-free and with proper scale in the size range of 5–30 μm, which made them the ideal templates for fabricating textured ceramics. In addition, some new reaction and growth mechanisms were proposed in this work.  相似文献   

10.
We have studied the stability of the Cr6+ ion in fine-particle TiO2-Cr2O3 oxides during storage after calcination in air. The results indicate that, during storage under normal conditions for 720 days, Cr6+ is reduced to Cr3+. The redox process is due to partial surface hydration of the Cr2O3 and TiO2 crystallites.  相似文献   

11.
A series of glass comprising of SiO2–MgO–B2O3–Y2O3–Al2O3 in different mole ratio has been synthesized. The crystallization kinetics of these glasses was investigated using various characterization techniques such as differential thermal analysis (DTA), thermo gravimetric analysis (TGA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Crystallization behavior of these glasses was markedly influenced by the addition of Y2O3 instead of Al2O3. Addition of Y2O3 increases the transition temperature, T g, crystallization temperature, T c and stability of the glasses. Also, it suppresses the formation of cordierite phase, which is very prominent and detrimental in MgO-based glasses. The results are discussed on the basis of the structural and chemical role of Y3+ and Al3+ ions in the present glasses.  相似文献   

12.
We have studied the crystallization behavior of Na2O-NaPO3-MVIO3(MVI = Mo, W) high-temperature solutions containing 15 mol % Bi2O3 in the pseudoquaternary systems Na2O-Bi2O3-P2O5-MVIO3 and have established the conditions for the formation of Na3Bi(PO4)2, high-temperature BiPO4, NaBi(MoO4)2, Bi2WO6, and NaMoO2PO4. The compounds identified have been characterized by powder x-ray diffraction and IR spectroscopy.  相似文献   

13.
Y2O3 + Nd2O3 co-stabilized ZrO2-based composites with 40 vol% WC were fully densified by pulsed electric current sintering (PECS) at 1350 °C and 1450 °C. The influence of the PECS temperature and Nd2O3 co-stabilizer content on the densification, hardness, fracture toughness and bending strength of the composites was investigated. The best combination of properties was obtained for a 1 mol% Y2O3 and 0.75 mol% Nd2O3 co-stabilized composite densified for 2 min at 1450 °C under a pressure of 62 MPa, resulting in a hardness of 15.5 ± 0.2 GPa, an excellent toughness of 9.6 ± 0.4 MPa.m0.5 and an impressive 3-point bending strength of 2.04 ± 0.08 GPa. The hydrothermal stability of the 1 mol% Y2O3 + 1 mol% Nd2O3 co-stabilized ZrO2-WC (60/40) composites was compared with that of the equivalent 2 mol% Y2O3 stabilized ceramic. The double stabilized composite did not degrade in 1.5 MPa steam at 200 °C after 4000 min, whereas the yttria stabilized composite degraded after less than 2000 min. Moreover, the (1Y,1Nd) ZrO2-WC composites have a substantially higher toughness (~9 MPa.m0.5) than their 2Y stabilized equivalents (~7 MPa.m0.5).  相似文献   

14.
Glasses of the ternary system ZnO–Bi2O3–P2O5 were prepared and studied in two compositional series 50ZnO–xBi2O3–(50 − x)P2O5 and (50 − y)ZnO–yBi2O3–50P2O5. Two distinct glass-forming regions were found in the 50ZnO–xBi2O3–(50 − x)P2O5 glass series with x = 0–10 and 20–35 mol.% Bi2O3. All prepared Bi2O3-containing glasses reveal a high chemical durability. Small additions of Bi2O3 (∼5 mol.%) improve thermal stability of glasses. All glasses crystallize on heating within the temperature range of 505–583 °C. Structural studies by Raman and 31P MAS NMR spectroscopies showed the rapid depolymerisation of phosphate chains within the first region with x = 0–15 and the presence of isolated Q0 phosphate units within the second region with x = 20–35. Raman studies showed that bismuth is incorporated in the glass structure in BiO6 units and their vibrational bands were observed within the spectral region of 350–700 cm−1. The evolution of properties and the spectroscopic data are both in accordance with a network former effect of Bi2O3.  相似文献   

15.
Sr0.97La0.02TiO3 ceramics with samll amounts of NiNb2O6 additives were prepared by the traditional solid state sintering method, and the phase purity, microstructure, dielectric properties and energy storage behavior of the NiNb2O6-added Sr0.97La0.02TiO3 ceramics were investigated. The results show that the grain size of the ceramics firstly decreases and then increases with increasing NiNb2O6 concentration. The average grain size reaches 0.55 um for the sample with 4.5 wt% NiNb2O6. Moreover, impedance spectroscopy (IS) analysis was employed to study the electrical conductive behavior of NiNb2O6-doped Sr0.97La0.02TiO3 ceramics. IS results reveale that the NiNb2O6-doped Sr0.97La0.02TiO3 ceramic has large R gb /(R gb  + R g ) ratios due to the decreased grain sizes. The breakdown strength is notably improved, and the highest breakdown strength of 324 kV/cm can be achieved for the sample with 4.5 wt% NiNb2O6 additive. The Sr0.97La0.02TiO3 sample with 4.5 wt% NiNb2O6 possesses the maximum theoretical energy density of 1.36 J/cm3, which is about 2 times higher than that of pure SrTiO3 in the literature. And its energy storage efficiency reaches 91.4 % under applied electric field of 80 kV/cm. This study provides the NiNb2O6 added ceramic as an attractive candidate for making high-energy density capacitors.  相似文献   

16.
ZnTa2O6 ceramics with various amount of Al2O3 additive were synthesized by a conventional mixed-oxide route. The grain growth of ZnTa2O6 ceramics was accelerated with Al2O3 additive. However, excessive addition (>1.0 wt%) of Al2O3 leaded to abnormal grain growth. With Al2O3 addition, the Al2O3 additive did not solubilized into ZnTa2O6 structure but resulted in forming the second phase. The Al2O3 addition resulted in the lower sintering temperature of ZnTa2O6 ceramics and improved microwave dielectric properties. The dielectric constant (εr) of the samples did not change much and ranged from 32.41 to 34.33 with different amount of Al2O3 addition. The optimized quality factor (Q × f) was higher than 70,000 GHz as a result of the denser ceramics. The temperature coefficient of resonant frequency (τ f ) of the doped ZnTa2O6 ceramics could be optimized to near-zero.  相似文献   

17.
Polycrystalline samples of Ba4Ln2Fe2Ta8O30 (Ln = La and Nd) were prepared by a high temperature solid-state reaction technique. The formation, structure, dielectric and ferroelectric properties of the compounds were studied. Both compounds are found to be paraelectrics with filled tetragonal tungsten bronze (TB) structure at room temperature. Dielectric measurements revealed that the present ceramics have exceptional temperature stability, a relatively small temperature coefficient of dielectric constant (τ ε ) of −25 and −58 ppm/°C, with a high dielectric constant of 118 and 96 together with a low dielectric loss of 1.2 × 10−3 and 2.8 × 10−3 (at 1 MHz) for Ba4La2Fe2Ta8O30 and Ba4Nd2Fe2Ta8O30, respectively. The measured dielectric properties indicate that both materials are possible candidates for the fabrication of discrete multilayer capacitors in microelectronic technology.  相似文献   

18.
Trivalent terbium-doped strontium aluminate (SrAl2O4:Tb3+) nanoparticles were synthesized via the sol–gel combustion technique, and the green photoluminescence (PL) and afterglow were evaluated to clarify the afterglow mechanism of SrAl2O4:Tb3+. The green PL of SrAl2O4:Tb3+ with characteristic emissions at 488, 543, 586, and 622 nm indicated that Tb dopant acts as the luminescent center of the PL. Contrarily, the green afterglow of SrAl2O4:Tb3+ was a broadband spectrum with its peak centered at around 520 nm, but no traces of Eu were found in SrAl2O4:Tb3+ phosphors within the detection limit of 1 μg/g. The band structures and density of states of SrAl2O4:Tb3+ were calculated within the framework of density functional theory. Both the ground state of Tb3+ dopant and the trap levels of oxygen vacancy were quantitatively determined in the band gap of SrAl2O4. Our results suggest that the deep electron trap of oxygen vacancy in the host acts as the luminescent center of the green afterglow from SrAl2O4:Tb3+. A possible afterglow mechanism is proposed to shed fresh light on the green afterglow of SrAl2O4:Tb3+.  相似文献   

19.
K4Nb6O17 nano-layered compound was obtained by solid-phase synthesis and then methylene blue (MB) was intercalated into layered niobate K4Nb6O17 interlayer I by a two-step guest-guest exchange method using the intercalation compound, methyl viologen (MV2+)–K4Nb6O17, as precursor. The optically transparent MB+–K4Nb6O17 nanocomposite thin film has been characterized by XRD, IR, TGA, elemental analysis, UV, and electrochemical measurements. It was estimated that the intercalated MB+ ions are mainly aggregated. The cyclic voltammogram of the MB+–K4Nb6O17 nanocomposite thin film exhibited a fine diffusion-controlled cathodic process, which hints the possibility of being utilized as an electrode modifying material.  相似文献   

20.
This article present the reports on optical study of Eu2+ and Ce3+ doped SrMg2Al6Si9O30 phosphors, which has been synthesized by combustion method at 550 °C. Here SrMg2Al6Si9O30:Eu2+ emission band observed at 425 nm by keeping the excitation wavelength constant at 342 nm, whereas SrMg2Al6Si9O30:Ce3+ ions shows the broad emission band at 383 nm, under 321 nm excitation wavelength, both the emission bands are assigned due to 5d–4f transition respectively. Further, phase purity, morphology and crystallite size are confirmed by XRD, SEM and TEM analysis. However, the TGA analysis is carried out to know the amount of weight lost during the thermal processing. The CIE coordinates of SrMg2Al6Si9O30:Eu2+ phosphor is observed at x?=?0.160, y?=?0.102 respectively, which may be used as a blue component for NUV-WLEDs. The critical distance of energy transfer between Ce3+ ions and host lattice is found to be 10.65 Å.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号