首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
王正伟 《工业设计》2011,(11):91-92
介绍了塑料在汽车制造中的应用现状,分析了汽车塑料化所遇到的问题。主要介绍了几种由纳米材料改性的特殊功能塑料,如抗菌、增韧增强、阻燃、导电以及抗紫外线防老化塑料等的特性、功能及应用领域,最后对纳米功能塑料在汽车中的应用前景进行了展望。  相似文献   

2.
纳米填料与塑料共混,可以改善塑料的强度、韧性.但是纳米填料与塑料的相容性差,需要对纳米材料进行表面改性.采用硅烷偶联剂γ-(甲基丙烯酰氧基)丙基三甲氧基硅烷对纳米Ti02进行表面处理,在其表面引入双键,然后与苯乙烯共聚,制备表面接枝聚苯乙烯的纳米TiO2粒子,拟用于聚苯乙烯抗冲击改性.采用红外光谱、扫描电镜、原子力显微镜对接枝聚合后的纳米TiO2粒子的形貌进行观察,并且采用热失重分析法定量表征纳米材料表面的接枝率.结果表明:通过悬浮聚合,TiO2粒子表面成功接枝聚合了聚苯乙烯.  相似文献   

3.
目的综述国内外纳米材料改性纸张性能的研究进展,为进一步开发纳米材料在包装工业中的应用提供科学的研究基础。方法概括纳米材料改性纸张性能的方法,分析纳米纤维素、壳聚糖纳米粒子、纳米黏土、纳米氧化物和金属纳米粒子分别对纸张包装性能的影响,及国内外相关的研究进展,并进一步总结纳米材料改性包装纸的应用领域和发展展望。结论大量研究结果表明,在造纸时加入或在纸表面涂覆纳米材料是改善纸张表面特性、光学特性、力学特性、印刷适性和阻隔性能等的有效途径。  相似文献   

4.
目的 -国内外纳米材料改性纸张性能的研究进展,为进一步开发纳米材料在包装工业中的应用提供科学的研究基础。方法 -概括纳米材料改性纸张性能的方法,分析纳米纤维素、壳聚糖纳米粒子、纳米黏土、纳米氧化物和金属纳米粒子分别对纸张包装性能的影响,及国内外相关的研究进展,并进一步总结纳米材料改性包装纸的应用领域和展望。结论 -大量研究结果表明,在造纸时加入或在纸表面涂覆纳米材料是改善纸张表面特性、光学特性、力学特性、印刷适性和阻隔性能等的有效途径。  相似文献   

5.
《中国粉体工业》2007,(4):35-35
1.纳米碳酸钙颗粒的表面改性 纳米碳酸钙颗粒应用于涂料中,要涉及到纳米材料与基料的相容性,涂料的成膜基料与塑料、橡胶等高聚物在官能团的种类与数量、相对分子质量等方面明显不同,进而导致聚合物的表面极性及与颜填料的相互作用方式皆有区别。要使纳米碳酸钙成功应用于涂料中,必须对纳米碳酸钙表面进行特殊的改性。  相似文献   

6.
纳米材料改进酚醛树脂烧蚀性能的研究进展   总被引:1,自引:0,他引:1  
田建团  张炜  郭亚林  周玉玺 《材料导报》2006,20(Z2):226-228,234
简要介绍了纳米碳粉、纳米碳纤维和蒙脱土等纳米材料在改性酚醛树脂烧蚀性能方面的研究进展,分析了各种方法的改性机理、优缺点以及研究现状.指出纳米材料改性是一个工艺简单、适应面广、颇具前景的研究方向.  相似文献   

7.
综述了近年来纳米材料改性树脂基耐烧蚀材料的研究进展。介绍了碳纳米管、石墨烯、蒙脱土、纳米SiO2、纳米碳粉等纳米材料在改性烧蚀材料中的研究近况,详细探讨和比较了改性材料的热稳定性、成炭率、力学性能等,同时分析了纳米材料改性树脂材料中存在的问题,并预测了纳米材料改性耐烧蚀树脂的发展趋势。提出纳米材料,特别是新型的纳米碳材料改性树脂基耐烧蚀材料的研究将是很有发展前景的研究领域,并会进一步得到人们的重视。  相似文献   

8.
综述了纳米材料改性聚磷酸铵(APP)的方法及其在聚合物材料中的协同阻燃作用。重点讨论了纳米二氧化硅(SiO2)、纳米碳酸钙(CaCO3)、海泡石、碳纳米管、纳米纤维素、纳米蒙脱土和可膨胀石墨改性APP协同阻燃聚合物材料方面取得的研究成果。提出了纳米材料改性APP在阻燃应用中存在的一些问题。  相似文献   

9.
本发明涉及一种复合纳米材料改性的乳液及其制备方法,它是用无机纳米材料改性丙烯酸酯类乳液,无机纳米材料是纳米氧化铝粉体和纳米硅溶胶的复配物。  相似文献   

10.
连续纤维增强热塑性树脂复合材料(CFRTP)具有易加工、可回收、力学性能优异等特点,在航空航天、汽车等领域的应用前景良好。随着纳米技术的发展,研究者发现利用纳米材料改性CFRTP可显著提升其性能。本文对纳米材料改性CFRTP领域的最新研究进展进行了综述,首先对CFRTP改性中常用的纳米材料(如碳纳米管、石墨烯以及无机纳米颗粒)和主要的改性方法(包括树脂基体中直接添加纳米填料和利用纳米材料对增强相纤维表面进行修饰)进行了介绍,在此基础上总结并讨论了纳米改性对CFRTP力学性能(包括界面结合性能、拉伸性能、动态力学性能以及冲击性能)的影响,最后对纳米材料改性CFRTP的发展方向进行了展望。   相似文献   

11.
高党鸽  张亚红  马建中 《材料导报》2017,31(21):123-129, 145
凹凸棒土是一种天然一维纳米材料,具有无毒、热稳定性好、比表面积大等特性,将其与聚合物复合能够改善聚合物的热稳定性能、物理力学性能等。简述了凹凸棒土的改性方法以及聚合物/凹凸棒土纳米复合材料的制备方法,综述了聚合物/凹凸棒土纳米复合材料在塑料、橡胶、污水处理等领域的研究进展,并对其发展进行了展望。  相似文献   

12.
简述了纳米材料改性聚氨酯的研究进展,重点介绍了纳米SiO2、纳米CaCO3和纳米蒙脱土对聚氨酯改性的研究现状.并简要介绍了新型纳米材料多面体低聚倍半硅氧烷(POSS)改性聚氨酯的研究状况,指出了聚氨酯/纳米复合材料的研究方向.  相似文献   

13.
地质聚合物作为新兴的绿色环保、低能耗胶凝材料,具有早期强度高、耐酸碱等优异性能,但脆性大、韧性差等缺陷影响其推广应用;在地质聚合物中掺入微纳米材料可以有效地改善地质聚合物的性能,提高其韧性。微纳米材料在地质聚合物中均匀分散是保证改性后地质聚合物具有优良性能的关键,为此,可在掺入过程中采用外力的方法进行分散,也可对微纳米材料进行表面改性来提高其分散性能,且表面改性后的微纳米材料能够更好地与地质聚合物基体结合。本文综述了纳米颗粒(如纳米二氧化硅、纳米二氧化钛)、碳纳米管、石墨烯、微米颗粒(如粉煤灰微球、硅灰)、微米纤维(如碳化硅晶须)等微纳米材料对地质聚合物的改性研究成果,总结了常见微纳米材料改性地质聚合物的分散方法及作用机理。其分散方法包括机械搅拌、超声分散和分散剂表面修饰。微纳米材料对地质聚合物的作用机理主要有填充作用、成核作用和桥接作用。微纳米材料能够填充地质聚合物的孔隙和裂缝,改善地质聚合物的孔结构;微纳米材料能够作为成核位点加速地质聚合物的缩聚过程,改善地质聚合物的微观结构与宏观性能;纤维状的微纳米材料具有桥接作用,可阻止裂缝的生成及扩展。此外,对于表面有基团(如羟基、羧基等)的...  相似文献   

14.
纳米材料领域的飞速发展为水泥基复合材料的增强改性提供了宝贵的机会。工程纳米材料存在3种主要形状,即0维纳米颗粒、1维纳米纤维和2维纳米片层。有大量文献已经报道了0维纳米颗粒和1维纳米纤维(如纳米二氧化硅和碳纳米管)在水泥基中的应用,而2维纳米片层状的氧化石墨烯(GO)的发现为水泥基复合材料提供了又一种维度的增强方式,目前已经受到了越来越广泛的关注。综述了近期各种维度纳米改性水泥基复合材料的研究进展,并总结了纳米材料与水泥基复合材料复合后的工作性、水化反应、力学性能及微观结构。  相似文献   

15.
聚氨酯/纳米复合材料的研究进展   总被引:6,自引:0,他引:6  
本文简述了纳米材料在聚氨酯中的应用,重点介绍纳米CaCO3、纳米SiO2、纳米碳材料及粘土对聚氨酯的改性研究,并指出了聚氨酯/纳米复合材料未来的研究方向.  相似文献   

16.
纳米氧化铝在聚合物改性中的研究进展   总被引:1,自引:0,他引:1  
聚合物经纳米氧化铝填充改性后,其力学性能、表面性能、电学性能及热性能等普遍能够得到改善。综述了近年来对纳米氧化铝改性聚合物的研究进展,重点讨论了纳米氧化铝在聚烯烃、聚酯、聚酰胺、其它塑料树脂及橡胶改性中的应用,并对纳米氧化铝改性聚合物的发展趋势及应用前景作了展望。  相似文献   

17.
采用天然纤维素制备的纤维素纳米晶体具有高强度、高模量和可降解等物理性能而被广泛的作为生物降解塑料的增强材料。根据目前国内外研究现状,本文综述了可降解生物塑料的种类及纤维素纳米晶体的制备方法,概述了纤维素纳米晶体/生物塑料复合材料的界面改性方法,并对纳米纤维素晶体对复合材料的性能的影响进行了总结。  相似文献   

18.
纳米粒子材料的表面改性及其应用研究进展   总被引:17,自引:0,他引:17  
在简单介绍纳米粒子团聚原因的基础上,着重讨论了纳米粒子表面物理和化学改性方法的研究进展.最后,介绍了改性纳米粒子在涂料、塑料、橡胶以及其它领域中的一些最新应用.  相似文献   

19.
纳米粉体的表面改性研究   总被引:1,自引:0,他引:1  
纳米粉体由于其具有特殊的性能而被广泛应用,但纳米粉体的团聚一直是困扰纳米材料制备和应用的关键问题,表面改性是有效解决这一问题的方法。本文介绍了目前常用的纳米粒子表面改性方法及改性基本原理。改性后的纳米粉体分散性和稳定性均得到提高。  相似文献   

20.
简要介绍了纳米TiO2的优缺点,及在涂料、塑料、造纸、化妆品、废水处理等工业生产中的主要应用。并对纳米TiO2常用的改性方法进行综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号