首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents an extended Kalman filter (EKF) based approach of integrating NOx and NH3 sensors to estimate the NOx concentrations in Diesel engine selective catalytic reduction (SCR) aftertreatment systems. NOx sensors have been commonly used by vehicles for aftertreatment system control and onboard diagnostics (OBD) purposes. However, most currently available NOx sensors are cross-sensitive to ammonia. Based on the experimental observations and physical inferences, the cross-sensitivity characteristics may change with temperature and is hard to be predicted by a model. This feature limits the applications of NOx sensors on urea-SCR systems where ammonia is the reductant for NOx conversions. Grounded in the insight into SCR dynamics and NOx sensor properties, a novel approach of using an extended Kalman filter to estimate the actual exhaust gas NOx concentration was proposed. The estimator was examined by NOx measurements from a Horiba gas analyzer under different engine operating conditions. The experimental results show that the EKF-based approach can significantly improve the accuracy of NOx concentration measurements from the original NOx sensor readings.  相似文献   

2.
Novel selective ammonia sensors with high potential for long-term stability in harsh exhaust environments are introduced. The sensor bases on the mixed potential effect. In contrast to common sensors, the electrode functionalities electrical conductivity, selective catalytic activity, and electrochemical activity combined with long-term stability are separated. For that reason, one of the two electrodes is covered by a well-known porous vanadia–tungstenia–titania-based SCR catalyst material, which has been developed for exhaust gas SCR applications. The resulting sensor signal depends semi-logarithmically on ammonia. The NOx cross-sensitivity is marginal. If enough oxygen is in the exhaust, the sensor signal is independent of the oxygen concentration. Tests downstream of an SCR catalyst show that very small ammonia slips can be determined.  相似文献   

3.
Prototype solid-state electrochemical sensors using a dense gold sensing electrode, porous yttria-stabilized zirconia (YSZ) electrolyte, and a platinum counter electrode (Au/YSZ/Pt) were evaluated for measuring NOx (NO and NO2) in diesel exhaust. Both electrodes were exposed to the test gas (i.e., there was no reference gas for the counter electrode). An impedancemetric method was used for NOx measurements, where the phase angle was used as the response signal. A portion of the tailpipe exhaust from the dynamometer test stand was extracted and fed into a furnace containing the experimental sensor. The prototype sensor was tested along with a commercially available NOx sensor. Simultaneous measurements for NOx, O2, CO2, H2O, CO, and CH4 in a separate feed stream were made using Fourier transform infrared (FTIR) spectroscopy and an oxygen paramagnetic analyzer. The experimental sensor showed very good measurement capability for NO in the range of 25-250 ppm, with a response paralleling that of the FTIR and commercial sensor. The prototype sensor showed better sensitivity to NOx at the lower concentration ranges. O2 is an interferent for the experimental sensor, resulting in decreased sensitivity for measurement of NOx. Methods to overcome this interference are discussed.  相似文献   

4.
In recent years planar yttria-stabilized zirconia (YSZ) based electrochemical gas sensors for automotive exhaust applications have become a major source of interest. The present work aims to develop a sensor for industrialisation. For this reason planar YSZ-based electrochemical sensors using two metallic electrodes (platinum and gold) were fabricated using screen-printing technology and tested in a laboratory test bench for different concentrations of pollutant gas such as CO, NO, NO2 and hydrocarbons in oxygen rich atmosphere. It was furthermore shown that the selectivity towards NOx could be highly reinforced by deposing a catalytic filter consisting of 1.7-4.5 wt.% Pt dispersed on alumina directly on the sensing elements. This filter was characterized by the use of SEM, TPD and XRD.  相似文献   

5.
Indium oxide (In2O3) doped with 0.5-5 at.% of Ba was examined for their response towards trace levels of NOx in the ambient. Crystallographic phase studies, electrical conductivity and sensor studies for NOx with cross interference for hydrogen, petroleum gas (PG) and ammonia were carried out. Bulk compositions with x ≤ 1 at.% of Ba exhibited high response towards NOx with extremely low cross interference for hydrogen, PG and ammonia, offering high selectivity. Thin films of 0.5 at.% Ba doped In2O3 were deposited using pulsed laser deposition technique using an excimer laser (KrF) operating at a wavelength of (λ) 248 nm with a fluence of ∼3 J/cm2 and pulsed at 10 Hz. Thin film sensors exhibited better response towards 3 ppm NOx quite reliably and reproducibly and offer the potential to develop NOx sensors (Threshold limit value of NO2 and NO is 3 and 25 ppm, respectively).  相似文献   

6.
Au-doped WO3-based sensor for NO2 detection at low operating temperature   总被引:1,自引:1,他引:0  
Pure and Au-doped WO3 powders for NO2 gas detection were prepared by a colloidal chemical method, and characterized via X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The NO2 sensing properties of the sensors based on pure and Au-doped WO3 powders were investigated by HW-30A gas sensing measurement. The results showed that the gas sensing properties of the doped WO3 sensors were superior to those of the undoped one. Especially, the 1.0 wt% Au-doped WO3 sensor possessed larger response, better selectivity, faster response/recovery and better longer term stability to NO2 than the others at relatively low operating temperature (150 °C).  相似文献   

7.
This paper presents the development and experimental studies of a complete selective catalytic reduction (SCR) system control-oriented model of a two-catalyst SCR system with onboard NOx and ammonia sensors. SCR catalysts have been popularly regarded as effective means for NOx emission control in medium- and heavy-duty vehicles in recent years. However, control of urea dosing upstream of the SCR systems still remains a challenge in the field mainly due to the complicated SCR dynamics and limited/inaccurate feedback information. A control-oriented SCR model is thus indispensable for SCR control systems. A variety of experimental tests were examined using a Diesel engine-aftertreatment system consisting of a diesel oxidation catalyst (DOC)/diesel particulate filter (DPF), two-SCR catalysts (Fe-Zeolite type) in series, three NOx sensors, and two NH3 sensors. By utilizing multiple emission sensors and the two-catalyst SCR setup, the sensor properties and SCR system dynamics were studied. Grounded in the experimental investigations and the physical insights, a control-oriented model for a complete SCR system was developed and validated with experimental data.  相似文献   

8.
The NO2 gas sensing characteristics of semiconductor type gas sensors with channels composed of necked ZnO nanoparticles (NPs) were investigated in this study. The heat treatment of the NPs at 400 °C led to their necking and coarsening. The response of the necked-NP-based sensors was as high as 100 when exposed to 0.2 ppm of NO2 at 200 °C. As the concentration of NO2 increased to 5 ppm, their response was enhanced to approximately 400. During the repeated injection of NO2 gas with a concentration of 0.4 ppm, the sensors exhibited stable response characteristics. Furthermore, the 90% response and recovery times of the gas sensor were as fast as 13 and 10 s, respectively. These observations indicate that the non-agglomerated necking of the NPs induced by the heat treatment significantly enhances the gas sensing characteristics of the NP-based gas sensors.  相似文献   

9.
SnO2 nanorods were successfully deposited on 3″ Si/SiO2 wafers by inductively coupled plasma-enhanced chemical vapour deposition (PECVD) and a wafer-level patterning of nanorods layer for miniaturized solid state gas sensor fabrication were performed. Uniform needle-shaped SnO2 nanorods in situ grown were obtained under catalyst- and high temperature treatment-free growth condition. These nanorods have an average diameter between 5 and 15 nm and a length of 160-300 nm. The SnO2-nanorods based gas sensors were tested towards NH3 and CH3OH and gas sensing tests show remarkable response, showing promising and repeatable results compared with the SnO2 thin films gas sensors.  相似文献   

10.
The limitations of intrinsic carbon nanotube (CNT) based devices to examine toxic gases motivate us to investigate novel sensors which can possibly overcome sensitivity problems. Pt–CNT assemblies (with Pt deposited externally as well as internally Pt-doped ones) interacting with NO2 and NH3 are studied and compared with unmodified CNTs. DFT calculations show that Pt can enhance adsorption and charge transfer processes to a very large degree. Incoming gas molecules cause changes in the electronic structure and charge distribution of the Pt-substituted CNTs that are both larger and more far-reaching than in their unmodified counterparts. Their relatively high stability is unaffected by the complexation with NO2 and NH3. CNTs with defective surface were also investigated. The sensing performance of Pt-doped CNT is found to be superior to defected CNTs.  相似文献   

11.
The square-like WO3 nanosheets were synthesized by hydrothermal treatment of irregular WO3 nanosheets prepared through acidification of Na2WO4·2H2O. The obtained square-like and irregular WO3 nanosheets were characterized with field emission scanning electron microscopy, X-ray powder diffraction and transmission electron microscopy. The gas sensing properties of sensors based on as-prepared samples were investigated. The results indicated that both samples exhibited high response to NO2. The sensor based on square-like WO3 nanosheets exhibited remarkably enhanced response and faster response/recovery time for NO2 compared with that based on irregular nanosheets. Especially, the sensor based on square-like WO3 nanosheets could detect NO2 down to 40 ppb, which covered environmental standard. A possible reason for the influence of unique structure on the sensing properties of sensors based on square-like WO3 was proposed.  相似文献   

12.
A silicon carbide based enhancement type metal insulator field effect transistor with porous gate metallization has been investigated as a total NO x sensor operated in a temperature cycling mode. This operating mode is quite new for gas sensors based on the field effect but promising results have been reported earlier. Based on static investigations we have developed a suitable T-cycle optimized for NO x detection and quantification in a mixture of typical exhaust gases (CO, C2H4, and NH3). Significant features describing the shape of the sensor response have been extracted and evaluated with multivariate statistics (e.g. linear discriminant analysis) allowing quantification of NO x . Additional cleaning-cycles every 30?min improve the stability of the sensor further. With this kind of advanced signal processing the influence of sensor drift and cross sensitivity to ambient gases can be reduced effectively. Measurements have proven that different concentrations of NO x can be detected even in a changing mixture of other typical exhaust gases under dry and humid conditions. In addition to that, unknown concentrations of NO x can be detected based on a small set of training data. It can be concluded that the performance of GasFETs for NO x determination can be enhanced considerably with temperature cycling and appropriate signal processing.  相似文献   

13.
The SnO2 nanowires (NWs) network gas sensors were fabricated on a micro-electrode and heater suspended in a cavity. The sensors showed selective detection to C2H5OH at a heater power during sensor operation as low as 30-40 mW. The gas response and response speed of the SnO2 NWs sensor to 100 ppm C2H5OH were 4.6- and 4.7-fold greater, respectively, than those of the SnO2 nanoparticles (NPs) sensor with the same electrode geometry. The reasons for these enhanced gas sensing characteristics are discussed in relation to the sensing materials and sensor structures.  相似文献   

14.
The intent of this work is to look at the effects of varying the La2CuO4 electrode area and the asymmetry between the sensing and counter electrode in a solid state potentiometric sensor with respect to NOx sensitivity. NO2 sensitivity was observed at 500-600 °C with a maximum sensitivity of ∼22 mV/decade [NO2] observed at 500 °C for the sensor with a La2CuO4 electrode area of ∼30 mm2. The relationship between NO2 sensitivity and area is nearly parabolic at 500 °C, decreases linearly with increasing electrode area at 600 °C, and was a mixture of parabolic and linear behavior 550 °C. NO sensitivity varied non-linearly with electrode area with a minima (maximum sensitivity) of ∼−22 mV/decade [NO] at 450 °C for the sensor with a La2CuO4 electrode area of 16 mm2. The behavior at 400 °C was similar to that of 450 °C, but with smaller sensitivities due to a saturation effect. At 500 °C, NO sensitivity decreases linearly with area.We also used electrochemical impedance spectroscopy (EIS) to investigate the electrochemical processes that are affected when the sensing electrode area is changed. Changes in impedance with exposure to NOx were attributed to either changes in La2CuO4 conductivity due to gas adsorption (high frequency impedance) or electrocatalysis occurring at the electrode/electrolyte interface (total electrode impedance). NO2 caused a decrease in high frequency impedance while NO caused an increase. In contrast, NO2 and NO both caused a decrease in the total electrode impedance. The effect of area on both the potentiometric and impedance responses show relationships that can be explained through the mechanistic contributions included in differential electrode equilibria.  相似文献   

15.
A 440 MHz wireless and passive surface acoustic wave (SAW)-based multi-gas sensor integrated with a temperature sensor was developed on a 41° YX LiNbO3 piezoelectric substrate for the simultaneous detection of CO2, NO2, and temperature. The developed sensor was composed of a SAW reflective delay lines structured by an interdigital transducer (IDT), ten reflectors, a CO2 sensitive film (Teflon AF 2400), and a NO2 sensitive film (indium tin oxide). Teflon AF 2400 was used for the CO2 sensitive film because it provides a high CO2 solubility, with good permeability and selectivity. For the NO2 sensitive film, indium tin oxide (ITO) was used. Coupling of mode (COM) modeling was conducted to determine the optimal device parameters prior to fabrication. Using the parameters determined by the simulation results, the device was fabricated and then wirelessly measured using a network analyzer. The measured reflective coefficient S11 in the time domain showed high signal/noise (S/N) ratio, small signal attenuation, and few spurious peaks. The time positions of the reflection peaks were well matched with the predicted values from the simulation. High sensitivity and selectivity were observed at each target gas testing. The obtained sensitivity was 2.12°/ppm for CO2 and 51.5°/ppm for NO2, respectively. With the integrated temperature sensor, temperature compensation was also performed during gas sensitivity evaluation process.  相似文献   

16.
Gas sensors based on a quartz crystal microbalance (QCM) coated with ZnO nanorods were developed for detection of NH3 at room temperature. Vertically well-aligned ZnO nanorods were synthesized by a novel wet chemical route at a low temperature of 90 °C, which was used to grow the ZnO nanorods directly on the QCM for the gas sensor application. The morphology of the ZnO nanorods was examined by field-emission scanning electron microscopy (FE-SEM). The diameter and length of the nanorods were 100 nm and 3 μm, respectively. The QCM coated with the ZnO nanorods gas sensor showed excellent performance to NH3 gas. The frequency shift (Δf) to 50 ppm NH3 at room temperature was about 9.1 Hz. It was found that the response and recovery times were varied with the ammonia concentration. The fabricated gas sensors showed good reproducibility and high stability. Moreover, the sensor showed a high selectivity to ammoniac gas over liquefied petroleum gas (LPG), nitrous oxide (N2O), carbon monoxide (CO), nitrogen dioxide (NO2), and carbon dioxide (CO2).  相似文献   

17.
This paper focuses on the gas sensing properties of the mixed-potential-type NO2 sensor based on yttria stabilized zirconia (YSZ) and NiO electrode. The sensing performance of the sensor was improved by modifying the three-phase boundary (TPB). Hydrofluoric acid with different concentrations (10%, 20% and 40%) was used to corrode YSZ substrate to obtain large superficial area of TPB. The scanning electron microscope and atomic force microscopic images showed that the 40% HF could form the largest superficial area at the same corroding time (3 h). The sensitivity of the sensor using the YSZ plate corroded with 40% hydrofluoric acid to 20-500 ppm NO2 was 76 mV/decade at 850 °C, which was the largest among the examined HF concentrations. It was also seen that the sensor showed a good selectivity and speedy response kinetics to NO2. On the basis of the measurements of anodic and cathodic polarization curves, as well as the complex impedance of the device, the sensing mechanism was confirmed to involve a mixed potential at the oxide sensing electrode.  相似文献   

18.
We report a novel route for the fabrication of highly sensitive and rapidly responding Nb2O5-based thin film gas sensors. TiO2 doping of Nb2O5 films is carried out by co-sputtering without the formation of secondary phases and the surface area of TiO2-doped Nb2O5 films is increased via the use of colloidal templates composed of sacrificial polystyrene beads. The gas sensitivity of Nb2O5 films is enhanced through both the TiO2 doping and the surface embossing. An additional enhancement on the gas sensitivity is obtained by the optimization of the bias voltage applied between interdigitated electrodes beneath Nb2O5-based film. More excitingly, such a voltage optimization leads to a substantial decrease in response time. Upon exposure to 50 ppm CO at 350 °C, a gas sensor based on TiO2-doped Nb2O5 film with embossed surface morphology exhibits a very high sensitivity of 475% change in resistance and a rapid response time of 8 s under 3 V, whereas a sensor based on plain Nb2O5 film shows a 70% resistance change and a response time of 65 s under 1 V. Thermal stability tests of our Nb2O5-based sensor reveal excellent reliability which is of particular importance for application as resistive sensors for a variety gases.  相似文献   

19.
Hierarchical flower-like and 1D tube-like ZnO architectures were synthesized by a microemulsion-based solvothermal method. Technologies of XRD, SEM and TEM were used to characterize the morphological and structural properties of the products. The influence of the flower-like and tube-like morphologies on their NO2 sensing properties was investigated. The experimental results showed that high-sensitivity NO2 gas sensors were fabricated. The sensitivity of the tube-like ZnO gas sensor was much higher than that of the flower-like ZnO gas sensor and the tube-like ZnO gas sensor exhibited shorter response time. The in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) technique was employed to investigate the NO2 sensing mechanisms. Free nitrate ions, nitrate and nitrite were the main adsorbed species during the adsorption, and NO also existed in the initial period of surface reoxidation. Furthermore, N2O was formed via NO and N2O2 stemmed from NO and increased upon rising temperature. Moreover, the PL spectra and the XPS spectra further proved that the intensity of donors (oxygen vacancy (VO) and zinc interstitial (Zni)) and surface oxygen species (O2 and O2) involved in the gas sensing mechanism leaded to the different sensitivities.  相似文献   

20.
Fe-doped yttrium manganate (YMn(1−x)FexO3) nanoparticles were synthesized by the precursor method. X-ray diffractions showed that the structures of the as-prepared powders were crystallized in the normal yttrium manganate phase (space group: P63cm) when doping concentration was low, while they were crystallized into the high-temperature yttrium manganate phase (space group: P63/mmc) at a high doping concentration. Then, the gas sensing properties of YMnO3 and YMn(1−x)FexO3 nanoparticles were studied for the first time. Both YMnO3 and YMn(1−x)FexO3 exhibited sensor response to alcohols, organic amines, dichloromethane, acetone, acetonitrile, methylbenzene, THF and so on. Interestingly, high-concentration Fe-doped yttrium manganate showed much better sensor response than that of normal yttrium manganate phase. We conclude that the multiferroic material of YMn(1−x)FexO3 is a promising potential new ABO3 type gas sensing material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号