首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study was carried out to evaluate the efficiency of secondary effluent additional treatment, using a combination of pre-treatments (ring filter, physico-chemical and infiltration-percolation) followed by disinfection methods (chlorine dioxide, peracetic acid and ultraviolet light). Three different indicator microorganisms were determined: E. coli, total coliforms and somatic bacteriophages. The results show better efficiency of physico-chemical and infiltration-percolation processes. Bacteriophages were eliminated to a lesser extent than bacterial indicators in all the treatment systems. Chlorine dioxide and peracetic acid seems to be more efficient in disinfection than ultraviolet light when a ring filter is the pre-treatment used. For the same doses and contact times, the efficiency of the disinfection methods is higher when the pre-treatment used is the physico-chemical or the infiltration-percolation system. The final effluent quality from the physico-chemical treatment train and the infiltration-percolation treatment train, followed by the disinfectants, achieves an E. coli content that allows the reuse in most of the uses described in the Spanish legislation for wastewater reuse.  相似文献   

2.
The decision on technologies used for reclaiming wastewater appears as important as a consequence of the implications on the economic, environmental and health conditions of societies. The problem arises when deciding how to deal with wastewater in small communities, because the costs of implementing and operating small, intensive wastewater treatment plants are unacceptable and can lead to financing and operation problems. Extensive treatment systems can be a good solution, where space is available. This paper presents the combination of two soft technologies (infiltration-percolation and constructed wetlands) to treat and reclaim wastewater. The obtained results show that the infiltration-percolation effluent presents a quality enough to be reused for irrigation of industrial crops, nurseries, fodder, cereals and oleaginous seeds, ornamental flower production; industrial cooling; impoundments, water bodies, and streams for recreational use in which the public's contact with the water is not permitted; and irrigation of forested areas, landscape areas and restricted access areas. Moreover, the combination of infiltration-percolation and constructed wetlands increases the list of final reclamation to the following: irrigation of pasture for milk or meat animals, crops for canning industry, crops not raw-consumed, fruit trees except by sprinkling, aquaculture; and aquifer recharge by localised percolation through the soil.  相似文献   

3.
A pilot scale membrane plant was constructed and monitored in Shah Alam, Malaysia for municipal wastewater reclamation for industrial application purposes. The aim of this study was to verify its suitability under the local conditions and environmental constraints for secondary wastewater reclamation. Immersed-type crossflow microfiltration (IMF) was selected as the pretreatment step before reverse osmosis filtration. Secondary wastewater after chlorine contact tank was selected as feed water. The results indicated that the membrane system is capable of producing a filtrate meeting the requirements of both WHO drinking water standards and Malaysian Effluent Standard A. With the application of an automatic backwash process, IMF performed well in hydraulic performance with low fouling rate being achieved. The investigations showed also that chemical cleaning is still needed because of some irreversible fouling by microorganisms always remains. RO treatment with IMF pretreatment process was significantly applicable for wastewater reuse purposes and promised good hydraulic performance.  相似文献   

4.
Water supply for human consumption requires certain quality that reduces health risks to consumers. In this sense, the process of disinfection plays an important role in the elimination of pathogenic microorganisms. Even though chlorination is the most applied process based on its effectiveness and cost, its application is being questioned considering the formation of disinfection by-products (DBPs). Therefore, alternative disinfectants are being evaluated and some treatment processes have been proposed to remove DBPs precursors (organic matter. This paper reports the results of disinfection of a non conventional source of water (aquifer recharged unintentionally with raw wastewater) with peracetic acid (PAA) and ultraviolet radiation (UV) as well as nanofiltration (NF) followed by chlorination to produce safe drinking water. The results showed that a dose of 2 mg/L PAA was needed to eliminate total and faecal coliforms. For UV light, a dose of 12.40 mWs/cm2 reduced total and faecal coliforms below the detection limit. On the other hand, chlorine demand of water before NF was 1.1-1.3 mg/L with a trihalomethane formation potential (THMFP) of 118.62 microg/L, in contrast with chlorination after NF where the demand was 0.5 mg/L and THMFP of 17.64 microg/L. The recommended scheme is nanofiltration + chlorination.  相似文献   

5.
For swimming pools, it is generally agreed that free chlorine levels have to be maintained to guarantee adequate disinfection. Recommended free chlorine levels can vary between 0.3 and 0.6 mg/L in Germany and up to 3 mg/L in other countries. Bathers introduce considerable amounts of organic matter, mainly in the form of such as urine and sweat, into the pool water. As a consequence, disinfection byproducts (DBPs) are formed. Regulations in Germany recommend levels of combined chlorine of less than 0.2 mg/L and levels of trihalomethanes (THMs) of less than 20 microg/L. Haloacetic acids (HAAs), haloacetonitriles (HANs), chloropicrin and chloral hydrate are also detected in considerable amounts. However, these compounds are not regulated yet. Swimming pool staff and swimmers, especially athletes, are primarily exposed to these byproducts by inhalation and/or dermal uptake. In Germany, new regulations for swimming pool water treatment generally require the use of activated carbon. In this project, three different types of granular activated carbon (GAC) (one standard GAC, two catalytic GACs) are compared for their long time behaviour in pool water treatment. In a pilot plant operated with real swimming pool water, production and removal of disinfection byproducts (THMs, HAAs, AOXs), of biodegradable substances (AOC), of bacteria (Pseudomonas aeruginosa, Legionella, coliforms, HPC) as well as the removal of chlorine and chloramines are monitored as function of GAC bed depth. Combined chlorine penetrates deeper in the filter bed than free chlorine does. However, both, free and combined chlorine removal efficiencies decrease over the time of filter operation. The decreases of removal efficiencies are also observed for parameters such as dissolved organic carbon, spectral absorption coefficient, adsorbable organic carbon and most of the disinfection byproducts. However, THMs, especially chloroform are produced in the filter bed. The GAC beds were contaminated microbially, especially with P. aeruginosa. The contamination was not removable by backwashing with chlorine concentrations up to 2 mg/l free chlorine.  相似文献   

6.
Amid the heightened public health concerns for emerging microorganisms such as cryptosporidium and enteropathogenic E. coli in the water environment, there have been many instances where optimization of chemical coagulation-flocculation processes and filtration of wastewater was not achieved in practice, resulting in waste of coagulant chemicals and breach of the multiple barriers to pathogen removal and inactivation; thus, unnecessarily endangering public health. In addition, lack of information on the optimization of these processes has hampered the establishment of alternative and more cost-effective wastewater reclamation methods for tertiary and advanced wastewater treatment.Thus, the purpose of this paper is to evaluate the basic factors affecting the optimization of chemical coagulation-flocculation and filtration processes in municipal wastewater reclamation and reuse, based on the theoretical developments and practical applications. Reference is also made to the wastewater treatment processes and operations that can produce reclaimed water with an extremely small probability of enteric virus contamination.  相似文献   

7.
In the new version of the World Health Organization (WHO), water reuse guidelines helminth ova are considered one of the main target pollutants to be removed from wastewater reuse for agriculture and aquaculture purposes. In spite of this, along with the fact that helminth ova have been considered the main health risk to wastewater reuse for agriculture for at least 20 years, relatively little research has been done to control helminth ova in the wastewater treatment field. This paper addresses (1) characteristics of helminth ova and differences with microorganisms; (2) the most frequent helminth ova genus found in wastewater; (3) helminth ova content in developed and developing countries wastewater; (4) reasons why conventional disinfection methods cannot be applied; (5) main removal mechanisms; and (6) processes that in practice have effectively removed or inactivated helminth ova.  相似文献   

8.
TiO2光催化技术在饮用水深度处理中的研究进展   总被引:1,自引:0,他引:1  
TiO2光催化技术能有效降解饮用水中微量有机污染物使之彻底矿化,并且具有很好的杀菌和抑制病毒活性的作用,是一种极具应用前景的饮用水处理技术.就光催化技术对饮用水中消毒副产物、腐殖质和内分泌干扰物的降解,微生物的灭活等诸方面的研究现状进行了系统总结与评述,并指出对其进一步研究的重要性和今后主要的研究方向.  相似文献   

9.
通过进行预臭氧化—紫外线联合氯消毒工艺处理高温高藻期滦河水的生产性试验,检测和分析三卤甲烷生成势(THMFP)和卤乙酸生成势(HAAFP)的含量变化情况,研究了整套水处理工艺,尤其是预臭氧化单元对氯消毒副产物(DBPs)的去除效果。同时,研究了甲醛和溴酸盐这两种臭氧化副产物在处理过程中的生成情况。结果表明:在高温高藻期,预臭氧化单元对THMFP和HAAFP的平均去除率分别为12.43%和15.06%,整套工艺对THMFP和HAAFP的平均总去除率分别为39.33%和54.12%,氯消毒副产物前体物得到有效去除;出水中甲醛含量低于50μg/L,溴酸盐的含量小于6μg/L,臭氧氧化副产物得到了有效控制。  相似文献   

10.
Reclamation and re-use of wastewater is one of the most effective ways to alleviate the shortage of water resources, while the safety of reclaimed water becomes one of the critical problems for protecting human health and the ecosystem. While a toxicity test can vividly reflect biological effects of chemicals as a whole, in this study, the Microtox test was used to screen toxicity changes of wastewater during conventional reclamation processes. The results showed that toxicities of water samples decreased continuously along reclamation processes except chlorination/dechlorination in which the toxicity increased significantly. Furthermore, as for different forms of residual chlorine, toxicity of wastewater was quite different with increasing chlorine dosage. NH3-N had a trend to decrease toxicity of disinfected wastewater, while UV254 had a trend to increase toxicity. It was found that there was a good linear relationship between toxicity formation and UV254/NH3-N ratio for wastewater after disinfection with combined chlorine form before peak-point.  相似文献   

11.
Maintenance of adequate chlorine residuals and control of disinfection byproducts (DBPs) throughout water distribution systems is currently an important issue. In particular, rechlorination can be a powerful tool in controlling adequate chlorine residual in a large distribution system. The patterns of chlorine decay and formation of DBPs due to rechlorination are different from those of chlorination; chlorine decay is slower and trihalomethane (THM) formation is lower with rechlorination. The present study evaluates whether existing predictive models for chlorine residual and THM formation are applicable in the case of rechlorination. A parallel first-order decay model represents the best simulation results for chlorine decay, and an empirical power function model (modified Amy model) with an introduced correction coefficient (phi1, phi2) is more suitable to THM formation.  相似文献   

12.
The aim of this study was to investigate some aspects of the performance of electrochemical process as an alternative disinfection strategy, while minimising DBPs, for water purification. The study of electrochemical processes has shown free chlorine to be produced, but smaller amounts of stronger oxidants, such as ozone, hydrogen peroxide and OH radicals (*OH), were also generated. The formation of mixed oxidants increased with increasing electric conductivity, but was limited at conductivities greater than 0.6 mS/cm. Using several microorganisms, such as E. coli and MS2 bacteriophage, inactivation kinetic studies were performed. With the exception of free chlorine, the role of mixed oxidants, especially OH radicals, was investigated for enhancement of the inactivation rate. Additionally, the formation and reduction of DBPs was studied by monitoring the concentration of haloacetic acids (HAAs) during the process.  相似文献   

13.
A dispersed-ozone flotation (DOF) separator was devised for a pilot study of tertiary wastewater treatment for re-use purposes. As a compact device combining coagulation, ozonation and flotation in an integrated unit, the DOF separator achieved a very high removal of SS, TOC, UV254 and colour, as well as effective inactivation of coliform and total bacteria within a short hydraulic retention time of 30 min. The finished water quality is comparable to or better than that by a conventional tertiary treatment process using coagulation, sedimentation, filtration and chlorine disinfection, and meets the quality standards for non-drinkable domestic reuse.  相似文献   

14.
Nitrosamines have been emerging as disinfection byproducts in drinking water using source water impacted with domestic wastewaters. Nitrogenous organic compounds are suggested as precursors of nitrosamines, but many of them have not been identified. This study investigated the correlations between nine selected nitrogenous organic compounds with different characteristics and corresponding disinfection by-product formation potentials (nitrosamines, trihalomethanes (THMs), and haloacetic acids (HAAs)) from their reactions with free chlorine, chlorine dioxide and monochloramine. Besides dimethylamine, the well-known precursor of nitrosamines, 3-(N,N-dimethyloctylammonio)propanesulfonate (3-N,N-DAPSIS) inner salt and benzyldimethyltetradecylamine (benzalkonium chloride, BKC) were suggested as important nitrosamine precursors. 3-N,N-DAPSIS could form about 1,000 ng/L of N-nitrosodimethylamine (NDMA) and more than 1,000 μg/L of THMs. More than 150,000 ng/L of NDMA were observed when BKC was treated with monochloramine, and high levels of THMs (up to 2,700 μg/L) were also yielded. As expected, free chlorine produced higher levels of THMs and HAAs, and chlorine dioxide generated minor levels of traditional DBPs. Nitrosamines were mainly formed when the precursors were treated with monochloramine.  相似文献   

15.
论述了二氧化氯的物理和化学特性及其用于饮水消毒的方法和特点。分析了二氧化氯发生器不适用我区小型农村饮水安全工程的原因,对使用稳定二氧化氯进行了可行性分析。  相似文献   

16.
Takashi Asano 《国际水》2013,38(1):36-42
ABSTRACT

Fundamental concepts of reusing urban wastewater as an alternative and a reliable source of water supply are discussed, along with the categories for water reuse, planning methodologies, wastewater reclamation technologies, and economics. The rational basis for integration of urban reclaimed water into water resources planning is proposed and the safe use of reclaimed water is evaluated. Special attention is paid to tertiary or advanced wastewater treatment systems that are capable of producing essentially pathogen-free effluent for a variety of uses such as irrigation of urban landscape, flushing of toilets served by dual plumbing systems in large commercial buildings, and groundwater recharge for eventual potable reuse. The motivating factors for wastewater reclamation and reuse are summarized and the costs of water reclamation projects are discussed with several examples. The integration of this alternative water supply into water resources planning is proposed and the safe use of reclaimed water is emphasized.  相似文献   

17.
Biofilms play a major role in many water reclamation and reuse technologies. Normally, wherever there is water, a support surface and nutrients available, a biofilm will form. In some cases, this may result in problems for the water treatment system, due to biofouling or the growth of pathogenic or other unwanted microbes, but more frequently, the biofilm serves a very useful purpose by biodegrading organic contaminants in the water or by converting unwanted inorganic materials into harmless ones. Biofilms are commonly found associated with membrane reactors and filtration systems used in water reclamation and reuse systems, and are often a critical component. They are also found in soils where they may impact water injection or removal systems, or in situ bioremediation. Knowledge of the way biofilms form, how they grow and how to control them is critical for effective design and operation of many water reclamation facilities. This paper explores the modes of formation and growth of biofilms, modern methods for exploring the structure and function of biofilms, and how to control their growth. This paper also presents details on our development of microelectrode sensor arrays for continuous soil pore water quality monitoring.  相似文献   

18.
More and more research effort has been put into the development of affordable and high-efficiency wastewater reclamation technology for small communities. In this study, an integrated chemically enhanced primary treatment (CEPT), trickling filter (TF) and ultrafiltration (UF) process was developed with success. Coagulant produced from fly ash was used to enhance primary treatment, while trickling filter packed with coal cinder through four-layer structure without aeration was employed for further removal of COD and ammonium-nitrogen from the CEPT effluent. 95 and 88% removal of COD and ammonium were achieved, while total phosphorus (TP) and suspended solid (SS) were found to be removed completely at a coagulant dosage of 2.5 mL/L in the CEPT-TF-UF system. The product water can meet the standard of Reuse of Recycling Water for Urban Water Quality Standard for Urban Miscellaneous Water Consumption (GB/T 18920-2002, China).  相似文献   

19.
The aim of this study was to verify the efficiency of removal of microorganisms in effluents of a Wastewater Treatment Plant (WWTP) comprising an association of a UASB reactor followed by three submerged aerated biofilters (BAF) and one tertiary filter. The WWTP designed to treat domestic wastewater from a population of 1,000 inhabitants showed high removal efficiency for organic matter and suspended solids. Helminth eggs were also efficiently removed from the tertiary effluent and were found in the sludge from the UASB reactor; however, removal of bacteria in this system was very low. To enhance the efficiency of the system, the effluent from tertiary filters was submitted to UV disinfection in a real scale reactor. Our results showed that UV irradiation was very effective at lowering the concentrations of E. coli, thermotolerant coliforms and coliphages to acceptable levels for agricultural reuse. Salmonella spp. and helminth eggs were seeded into the tertiary effluent before passing through the UV reactor. Salmonella was not found in the final effluent, but helminth eggs were not completely inactivated by UV irradiation and viable eggs were detected after 28 d of incubation.  相似文献   

20.
Due to its efficiency and relatively low capital demanding, many wastewater treatment plants have applied chlorination for disinfection of treated wastewater before discharging it. However, determination of optimal doses of chlorine for chlorination and sulfite for dechlorination, which removes residual chlorine, should made to guarantee complete destruction of microorganisms in treated wastewater and to protect aquatic life in a receiving stream. In this study, a new ORP/pH based approach to determine endpoints of breakpoint chlorination and of dechlorinating titration and to optimize doses of chlorine and sulfite. In this new method, significant points on the ORP and pH profiles occurring during the titrations for chlorination and dechlorination were utilized to determine chlorine demand and sulfite dosage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号