首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
NiAl合金的超塑性行为及其变形机制   总被引:6,自引:0,他引:6  
研究了等原子比NiAl合金的NiAl-25Cr,NiAl-20.4Fe-Y,Ce,NiAl-30Fe-Y合金的超塑性行为及其变形机制,结果表明,几种合金在一定条件下均表现出超塑性行为,单相NiAl超塑性变形源于变形过程中所发生的动态回夏及再结晶,两相及多相NiAl合金的超塑性变形机制则是晶粒的转动和界面的滑动。  相似文献   

2.
综述了金属间化合物的组织超塑性行为的最新进展状况,介绍了镍基(Ni3Al,Ni3Si,NiAl)、钛基(TiAl,Ti3Al)、铁基(Fe3Al,F3Al和Fe3Si)和钴基(Co3Ti)金属间化合物的粗晶和细晶组织的超塑性行为(CSS and FSS),着重于微观组织的分析以及变形机制的阐述,讨论了动态再结晶(DRX)在超塑性变形中的作用;传统的动态再结晶(DRX)是细晶结构金属间化合物超塑性变形的一种有效的协调机制。而连续的动态再结晶(CRX)是粗晶结构金属间化合物超塑性变形的主要机制。还展望了金属间化合物超塑性的研究方向。  相似文献   

3.
研究了B2型多晶NiAl的晶界结构对缺陷态正电子寿命的影响,并结合正电子谱探讨了热挤压及超塑性变形过程后的晶界结构,热挤压的NiAl合金具有有完全的再结晶组织,而超塑性变形过程中的动态回复和再结晶是一种不完全再结晶过程,所得到的晶界仍属于亚晶界或小角度晶界范畴,再结晶晶界在超塑性变形过程中不产生滑动。  相似文献   

4.
8090 Al-Li合金超塑变形的多重机制   总被引:1,自引:0,他引:1  
本文研究了8090Al-Li 合金的超塑性变形中的微观组织结构及变形机制。电镜观察表明在8090Al-Li 合金的最佳超塑性变形条件下(T=500℃,(?)_1=3.33×10~(-3)s~(-1)),动态回复和动态再结晶是该合金超塑性变形的多重机制之一,起到了细化晶粒、释放三角晶界处应力集中和消除晶界滑动的障碍的作用。  相似文献   

5.
研究了微量P对挤压态等原子比NiAl的微观组织与高温力学性能的影响.结果表明:微量P的添加对NiAl的晶格常数有一定的影响,P偏聚于NiAl晶界处;并对其高温延伸率有重要影响.P偏聚于晶界阻碍了合金变形过程中的动态回复和再结晶,加剧了晶界处孔洞的形成,造成了NiAl-P合金与二元NiAl合金高温力学性能的显著差异,主要表现在:应力-应变曲线经历了较长的加工硬化阶段;最大延伸率明显下降;变形激活能升高,应变速率敏感指数下降.NiAl-P合金的高温变形机制为变形过程中位错的滑移与攀移共同作用.  相似文献   

6.
对于α+β及亚稳β钛合金,传统的轧制或锻造等热变形加工通常在α+β两相区和β单相区进行,在热变形过程中发生动态回复和动态再结晶.对β和α+β相区热变形组织的研究表明,变形早期动态回复形成的β亚晶界(小角度晶界),在进一步变形后变成大角度晶界.经过连续动态再结晶,晶界结构发生变化.但钛合金热变形过程中动态回复组织需要根据动态再结晶机制进行检验.  相似文献   

7.
详细的对Ti3Al金属间化合物的超塑性研究进展状况进行了总结和评述.根据现有的研究结果可知,此类合金的最佳超塑性变形温度为940~980℃,最佳超塑性变形的应变速率为10-4~10-3s-1,其最大延伸率可达1500%左右,接近于普通钛合金的超塑性水平.Ti3Al金属间化合物超塑变形的主要机制是晶界滑动,失效的主要原因是空洞的形成和连接.针对已取得的研究成果和在目前研究中仍然存在的问题,提出了一些有关Ti3Al金属间化合物超塑性研究的看法.  相似文献   

8.
采用热模拟实验对含Sc超高强Al-Zn-Cu-Mg-Zr合金在应变速率为0.001~10s-1、变形温度为380~470℃的条件下进行了热压缩实验.研究了实验合金的流变应力行为和微观组织演变.结果表明:流变应力随变形温度升高而下降;随应变速率增加峰值应力也相应增加.随变形温度升高和应变速率降低,合金动态再结晶的程度加深,亚晶尺寸变大.含Sc超高强Al-Zn-Cu-Mg-Zr合金,形成了Al3Sc弥散相,该相可强烈抑制再结晶.合金主要软化机制为动态回复伴随动态再结晶.  相似文献   

9.
研究了定向凝固NiAl-Mo(Hf)和NiAl-Fe(Nb)合金的拉伸行为和显微组织变化.结果表明,两种合金在一定的拉伸条件下均具有反常的屈服行为和中温脆性.反常屈服和中温脆性行为与合金中含有的Ni3Al相有关.两种合金在高温时还表现出高应变速率的超塑性变形行为.超塑性变形的主要机理是位错滑移和攀移产生的应变硬化与动态回复和动态再结晶的应变软化作用相平衡.超塑性变形试样的断口呈韧性特征,在断裂区有孔洞产生.  相似文献   

10.
通过聚焦离子束在5A90铝锂合金试样表面蚀刻微米尺寸高分辨网格,在温度480℃、初始变形速率1×10~(-3)s~(-1)的变形条件下,定量研究其超塑性变形过程中晶界滑移和晶内位错滑移对总变形的贡献量,并采用扫描电镜、电子背散射衍射观察合金超塑性变形的组织演变作为佐证。结果表明:位错运动在超塑性变形初期(ε0.65)的贡献量约为60%~80%,为主要变形机制,在该阶段条带状晶粒逐渐细化和等轴化,平均晶粒尺寸减小约40%,晶粒转动作为协调机制;随着应变量的增大,发生明显的动态再结晶,晶粒尺寸开始增大,晶内位错滑移的作用逐渐减小,晶界滑移成为变形的主要机制。  相似文献   

11.
The superplasticity of Ti-43Al-9V-0.2Y alloy sheet hot-rolled at 1100 ℃ was systematically investigated in the temperature range of 750-900 ℃ under an initial strain rate of 10-4 s-1.A bimodal γ grain-distribution microstructure of TiA1 alloy sheet,with abundant nano-scale or sub-micron γ laths embed-ded inside β matrix,exhibits an impressive superplastic behaviour.This inhomogeneous microstructure shows low-temperature superplasticity with a strain-rate sensitivity exponent of m =0.27 at 800 ℃,which is the lowest temperature of superplastic deformation for TiAl alloys attained so far.The maximum elongation reaches ~360% at 900 ℃ with an initial strain rate of 2.0 × 10-4 s-1.To elucidate the softening mechanism of the disordered β phase during superplastic deformation,the changes of phase composi-tion were investigated up to 1000 ℃ using in situ high-temperature X-ray diffraction (XRD) in this study.The results indicate that β phase does not undergo the transformation from an ordered L20 structure to a disordered A2 structure and cannot coordinate superplastic deformation as a lubricant.Based on the microstructural evolution and occurrence of both y and β dynamic recrystallization (DR) after tensile tests as characterized with electron backscatter diffraction (EBSD),the superplastic deformation mecha-nism can be explained by the combination of DR and grain boundary slipping (GBS).In the early stage of superplastic deformation,DR is an important coordination mechanism as associated with the reduced cavitation and dislocation density with increasing tensile temperature.Sufficient DR can relieve stress concentration arising from dislocation piling-up at grain boundaries through the fragmentation from the original coarse structures into the fine equiaxed ones due to recrystallization,which further effectively suppresses apparent grain growth during superplastic deformation.At the late stage of superplastic de-formation,these equiaxed grains make GBS prevalent,which can effectively avoid intergranular cracking and is conducive to the further improvement in elongation.This study advances the understanding of the superplastic deformation mechanism of intermetallic TiAl alloy.  相似文献   

12.
The microstructure, high strain rate superplasticity and tensile creep behavior of directionally solidified (DS) NiAl-Mo(Hf) alloy have been investigated. The alloy exhibits dendritic structure, where dendritic arm is NiAl phase, interdendritic region is Ni3Al phase, and Mo-rich phase distributes in the NiAl and Ni3Al phases. The alloy exhibits high strain rate superplastic deformation behavior, and the maximum elongation is 104.2% at 1373 K and strain rate of 1.04×10-2 s-1. The balance between strain hardening (by dislocation glide) and strain softening (by dynamic recovery and recrystallization) is responsible for the superplastic deformation. All the creep curves of the DS NiAl-Mo(Hf) alloy have similar shape of a short primary creep and dominant steady creep stages, and the creep strain is great. The possible creep deformation mechanism was also discussed. The creep fracture data follow the Monkman-Grant relationship.  相似文献   

13.
A maximum superplastic elongation of 638% has been obtained in a fine-grained Ni3Al-based intermetallic alloy containing 8wt% Cr. The extent of superplasticity obtained is dependent on the heat treatment given to the alloy, the test temperature and the strain rate. The activation energy of deformation and the value for the strain rate sensitivity parameter were comparable to those noted earlier in metallurgical alloy systems. There was some evidence that dynamic recrystallization plays a role in determining the extent of cavitation in the grain sized encountered here.  相似文献   

14.
The deformation mechanism in high-strain-rate superplastic P/M7475 before and after continuous dynamic recrystallization (CDRX) was investigated. The recrystallization process in P/M7475 differed from that in conventional superplastic material, I/M7475. In I/M7475, the fine-grained microstructure was obtained by static recrystallization before deformation. On the other hand, the substructure in P/M7475 evolved into fine grains during deformation by CDRX. The percentage of high-angle and random boundaries was low at an initial stage of deformation. However, it increased with strain in P/M7475. The microstructural change in P/M7475 influenced a deformation mechanism and affected grain boundary sliding (GBS). The ratio of contribution of GBS to total elongation was low at an early stage of deformation in P/M7475. However, it increased with deformation progressed. It is suggested that the deformation behavior in P/M7475 changed from dislocation creep to superplasticity as the dominant deformation mechanism changed to GBS. The activation energy for superplastic flow in P/M7475 was close to that for lattice self-diffusion in pure aluminum. It is therefore concluded that the dominant deformation mechanism after CDRX in P/M7475 is GBS accommodated by dislocation movement controlled by lattice self-diffusion, similar to that in I/M7475.  相似文献   

15.
《材料科学技术学报》2019,35(11):2591-2599
In this work,the flow behaviors and microstructure evolution of a powder metallurgy nickel-based superalloy during superplastic compression is investigated.Based on the strain rate sensitivity m determined by flow data,superplastic region is estimated at relatively low temperature and strain rate domains,specifically around 1000 ℃/10~(-3)s~(-1).Thereafter,the cylinder specimens are isothermally compressed at 1000 ℃/10~(-3)s~(-1) and 1025 ℃/10~(-3)s~(-1) with different strains,to exam the superplasticity and related mechanisms.The experimental results indicate that the accumulated dislocations are mainly annihilated by dynamic recovery and dynamic recrystallization(DRX),and the grain boundary sliding(GBS)contributes to the total strain during superplastic compression as well.In addition,the cavities and cracks at triple junctions or interfaces between matrix and second phase particle have not been detected,which is different from superplastic tensile deformation.  相似文献   

16.
Superplasticity in ceramics   总被引:1,自引:0,他引:1  
It is now recognized that superplasticity is a potential deformation process in ceramics. This review summarizes the major characteristics of superplasticity and examines the reports of both transformation and structural superplasticity in ceramic and other non-metallic materials. It is shown that there are both similarities to and differences from metals. Similarities include the variation of strain rate with stress and grain size, but an important difference is the necessity to consider the role of intergranular glassy phases in ceramics. Superplasticity is also important in intermetallic compounds, and in geological materials where there is evidence for superplastic deformation both in laboratory experiments and in natural deformation.  相似文献   

17.
A two-stage strain rate deformation method is proposed to enhance the superplasticity in a hot extruded AZ61 alloy. In the stage-one of deformation, a relatively high strain rate was applied in order to obtain fine grains through dynamic recrystallization. The optimum strain rate for DRX at 300℃ was identified as -5×10-3s-1. Stage-two is conducted at relatively low strain rate in order to utilize the fine grains refined by DRX during stage-one to make the grain boundary sliding operate more smoothly, which resulting in enhanced superplastic elongation from 350% to 440%.  相似文献   

18.
通过高温拉伸实验研究TC18钛合金在温度为720~950℃,初始应变速率为6.7×10~(-5)~3.3×10~(-1)s~(-1)时的超塑性拉伸行为和变形机制。结果表明:TC18钛合金在最佳超塑性变形条件下(890℃,3.3×10~(-4)s~(-1)),最大伸长率为470%,峰值应力为17.93MPa,晶粒大小均匀。在相变点Tβ(872℃)以下拉伸,伸长率先升高后下降,在温度为830℃,初始应变速率为3.3×10~(-4)s~(-1)时取得极大值373%,峰值应力为31.45MPa。TC18钛合金在两相区的超塑性变形机制为晶粒转动与晶界滑移,变形协调机制为晶内位错滑移与攀移;在单相区的超塑性变形机制为晶内位错运动,变形协调机制为动态回复和动态再结晶。  相似文献   

19.
The superplastic behavior of medical magnesium alloys is reviewed in this overview article. Firstly, the basics of superplasticity and superplastic forming via grain boundary sliding (GBS) as the main deformation mechanism are discussed. Subsequently, the biomedical Mg alloys and their properties are tabulated. Afterwards, the superplasticity of biocompatible Mg-Al, Mg-Zn, Mg-Li, and Mg-RE (rare earth) alloys is critically discussed, where the influence of grain size, hot deformation temperature, and strain rate on the tensile ductility (elongation to failure) is assessed. Moreover, the thermomechanical processing routes (e.g. by dynamic recrystallization (DRX)) and severe plastic deformation (SPD) methods for grain refinement and superplasticity in each alloying system are introduced. The importance of thermal stability (thermostability) of the microstructure against the grain coarsening (grain growth) is emphasized, where the addition of alloying elements for the formation of thermally stable pinning particles and segregation of solutes at grain boundaries are found to be major controlling factors. It is revealed that superplasticity at very high temperatures can be achieved in the presence of stable rare-earth intermetallics. On the other hand, the high-strain-rate superplasticity and low-temperature superplasticity in Mg alloys with great potential for industrial applications are summarized. In this regard, it is shown that the ultrafine-grained (UFG) duplex Mg-Li alloys might show remarkable superplasticity at low temperatures. Finally, the future prospects and distinct research suggestions are summarized. Accordingly, this paper presents the opportunities that superplastic Mg alloys can offer for the biomedical industries.  相似文献   

20.
《Materials Letters》2004,58(7-8):1297-1301
Superplasticity was found in single-phase Ni–48Al alloy with initial grain size of 200 μm under an initial strain rate of 1.25×10−4 to 2×10−3 s−1 at temperatures ranging from 1025 to 1100 °C. The maximum elongation of 188.2% was obtained under an initial strain rate of 1.125×10−3 s−1 at 1100 °C. Optical metallography (OM) showed that the grains were refined during superplastic deformation from initial 200 to less than 20 μm. Transmission electron microcopy (TEM) observation showed that an unstable subgrain boundary network formed during superplastic deformation. The subgrain boundaries were transformed into low- and high-angle grain boundaries by absorbing gliding dislocations. The large-grained superplastic phenomenon could be explained by continuously dynamic recovery and recrystallization (CDRR).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号