首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为准确地对滚动轴承的剩余寿命进行预测,提出了一种基于灰色模型(grey model,GM)的预测方法。首先,计算滚动轴承的全寿命周期的评估指数(confidential value,CV);其次,以滚动轴承的CV值序列建立灰色预测模型,获取灰参数;最后进行迭代运算获得滚动轴承CV值的预测值,并计算其剩余寿命。预测结果表明,该预测方法获得的预测数据与实际情况贴合度比较高,可以应用到滚动轴承的故障诊断项目中。  相似文献   

2.
为解决支持向量机模型在预测滚动轴承剩余寿命时准确率不高的问题,对核主成分分析(Kernel Principal Component Analysis,KPCA)和最小二乘支持向量机(Least Square Support Vector Machine,LSSVM)在剩余寿命预测中的应用进行了研究。采用核主成分分析方法融合轴承振动信号时域、频域特征指标并提取第一主成分评估轴承性能退化情况,并将满足要求的多个KPCA主成分作为输入,建立KPCA-LSSVM模型来对轴承剩余寿命进行预测。采用轴承全寿命试验数据对该方法的有效性进行验证,结果表明,该方法提取的轴承性能退化评估指标能够更为全面地表征轴承性能退化情况,建立的KPCA-LSSVM模型可在滚动轴承剩余寿命预测工作中获得良好的预测效果。  相似文献   

3.
针对滚动轴承退化数据的复杂性和相关性,以及传统的寿命预测方法不能充分利用在线数据和非全寿命生命周期数据,从而导致预测精度不高的问题,提出了一种基于代价最小化的参数动态更新的LSTM预测模型.该模型采用离散小波变换对滚动轴承振动数据进行去噪,并提取时频域特征完成LSTM的训练与测试,利用在线监测数据滚动更新LSTM参数以...  相似文献   

4.
为保障机械设备工作的安全性与可靠性,剩余寿命预测技术是设备轴承维护中的重要环节。由于深度学习具有强大的数据处理能力,提出通过使用深度学习的数据驱动方法来提高预测的准确度。首先,将来自轴承的原始振动信号用作深层网络的输入,深度置信网络和深度自编码器用于提取深度特征;其次,基于提取的特征选择不同的回归模型进行回归;最后,用测试轴承进行测试,比较两种深度特征及传统特征在不同的回归模型上的表现。实验结果表明,深度置信神经网络特征准确性更高,支持向量回归模型效果较其他模型更优。  相似文献   

5.
段红  叶强  李兴林 《轴承》2000,(1):25-26
研究了滚动轴承寿命预测的方法和数据的处理方法,利用有BP网络信息进行学习,建立了分类系统,通过实例验证了其有效性。  相似文献   

6.
基于相对特征和多变量支持向量机的滚动轴承剩余寿命预测   总被引:19,自引:0,他引:19  
为解决有限状态数据下滚动轴承剩余寿命难以估算的问题,提出一种基于相对特征和多变量支持向量机(Multivariablesupport vector machine,MSVM)的剩余寿命预测的新方法。该方法利用不受轴承个体差异影响的相对方均根值(Relative rootmean square,RRMS)评估轴承性能衰退规律,运用相关分析选取敏感特征作为输入,构造兼顾多变量回归和小样本预测双重优势的MSVM模型预测轴承剩余寿命。与单变量支持向量机相比,MSVM克服了结构简单、信息匮乏等缺点,实现小样本数据潜在信息的最大挖掘。运用仿真数据和轴承全寿命试验数据对预测模型进行检验,结果表明MSVM可在小样本条件下利用尽可能多的有效信息获得准确的预测结果,具有较强的工程使用价值和通用性。  相似文献   

7.
能源、石化和造纸等行业广泛采用流水作业线 ,要求有一些检测手段来检查机械设备的技术状况 ,特别是滚动轴承的状况。根据诊断结果 ,可以确定滚动轴承的剩余寿命 ,从而比较合理地进行修理作业。利用振动诊断分析滚动轴承的状况g ,可以确定其工作能力系数的变化程度 ,再考虑介质状况S ,则可以预测由i次测量的轴承状况g向新质量状况过渡的情况 ,即推断滚动轴承损坏的时刻并预测其剩余寿命。大体上要具备下述条件 :∪Li=1gi =g ( 1 )gi ∩gM =0 (任何i≠M) ( 2 )式中 L缺陷的种类数条件 ( 1 )式和 ( 2 )式都表示 ,在i次测量…  相似文献   

8.
滚动轴承的剩余使用寿命(Remaining useful life,RUL)预测是轴承健康管理的关键一环。然而,对于滚动轴承RUL预测的两个关键问题:开始预测时间点(Start prediction time, SPT)的选择;对于寿命虚假波动的处理。为了解决这两个问题,提出一种基于数据驱动的滚动轴承RUL预测方法。该方法先利用集合经验模态(Ensemble empirical mode decomposition,EEMD)对振动信号进行降噪处理,然后依靠均方根(Root mean square,RMS)梯度来选择SPT点进行RUL预测,最后,在RUL预测的同时,使用线性回归来进行寿命虚假波动修复。为了验证方法的有效性,采用仿真模拟数据,以及真实数据进行了验证。实验结果表明,所提出的方法能够有效选择合适的SPT以及修复寿命虚假波动。  相似文献   

9.
10.
基于机器学习的设备剩余寿命预测方法综述   总被引:1,自引:0,他引:1  
随着科学技术的发展和生产工艺的进步,当代设备日益朝着大型化、复杂化、自动化以及智能化方向发展。为保障设备安全性与可靠性,剩余寿命(Remaining useful life,RUL)预测技术受到了普遍关注,同时得到了广泛应用。传统的统计数据驱动方法受模型的选择影响明显,而机器学习具有强大的数据处理能力,并且无需确切的物理模型和专家先验知识,因而机器学习在剩余寿命预测领域表现出了广阔的应用前景。鉴于此,详细分析和阐述了基于机器学习的设备剩余寿命预测方法。根据机器学习模型结构的深度,将其分为基于浅层机器学习的方法和基于深度学习的方法。同时疏理了每类方法的发展分支与研究现状,并且总结了相应的优势和缺点,最后探讨了基于机器学习的剩余寿命预测方法的未来研究方向。  相似文献   

11.
针对不同型号滚动轴承因结构尺寸、运行工况等差异导致轴承退化数据分布和特征尺度不一致,引起剩余寿命预测精 度下降的问题,提出基于子空间域对抗判别网络的不同型号滚动轴承剩余寿命预测方法。 首先,通过高效通道注意力机制提升 特征提取器各通道中重要特征的权重,自适应获取不同型号滚动轴承的深层性能退化特征,并以此预训练标签预测器;然后,在 对抗判别网络框架上将域判别器与特征提取器对抗训练,最小化源域和目标域在表征子空间上的正交基距离,利用表征子空间 正交基不受特征缩放影响的性质克服特征尺度变化过大引起的回归性能下降问题,实现不同型号滚动轴承间的域自适应;最 后,利用训练好的特征提取器提取待预测轴承退化特征,输入标签预测器得到剩余寿命。 在 PRONOSTIA、XJTU-SY 和自测数据 集上进行了验证,实验结果表明所提方法能充分学习源域特征分布信息,有效克服不同型号下的特征尺度差异,相比其他域自 适应方法效果提升 20% 至 40% 。  相似文献   

12.
针对单一时频域指标不能完全诠释滚动轴承全寿命周期退化特性以及剩余使用寿命(remaining useful life,简称RUL)预测困难的问题,提出了基于均方谐噪比(mean square harmonic noise ratio,简称MSHNR)指标和改进正则化粒子滤波(regularized particle filter, 简称RPF)相结合的剩余寿命预测方法。首先,在局部均值进行信号分解的基础上,通过MSHNR指标实现轴承退化过程的特征提取;其次,分别基于Paris模型及Foreman模型构建滚动轴承稳定退化期和加速退化期的状态空间模型,并利用基于欧式距离的核函数实现重采样过程的改进,实现轴承健康状态评估和剩余寿命预测;最后,通过公开的滚动轴承加速数据验证了所述方法的有效性。相关研究成果能够为核动力旋转设备中滚动轴承的预测性维护提供参考依据,提高公众对核动力旋转设备运行的认识与信赖。  相似文献   

13.
服役零件疲劳寿命的预测与评估是装备高质量运行的前提。为准确预测服役零件的剩余寿命,基于磁记忆检测方法探索影响零件剩余寿命的参数,建立剩余寿命预测的新方法。以汽车车桥桥壳为对象,通过ABAQUS对服役零件进行疲劳寿命模拟分析,识别零件的疲劳危险区域;借助金属磁记忆检测技术和断裂力学理论,提取零件疲劳危险区中表征疲劳损伤程度的裂纹长度、应力强度因子、磁记忆信号法向分量梯度最大值、应力集中度等作为参数;引入支持向量机(SVM)理论,建立零件的剩余寿命预测模型。结果表明:SVM模型具有较高的预测精度,预测值与疲劳试验实测剩余寿命值相比误差不超过10%;预测精度同时受到零件损伤程度、训练样本数量、载荷大小和输入特征参数等的影响;建立的方法能够有效应用于低载荷高周疲劳下的桥壳等服役零件的剩余寿命预测。  相似文献   

14.
为了精准预测滚动轴承的剩余使用寿命,提出一种基于VMD和ELM_AdaBoost的滚动轴承剩余寿命预测方法。该方法首先利用变分模态分解对滚动轴承全寿命振动信号进行分解,得到多个模态分量,并提取各模态分量的奇异值作为滚动轴承故障特征信息。然后利用主成分分析(PCA)进行特征信息融合,建立滚动轴承性能退化评价指标。最后将经PCA融合后奇异值代入到ELM_AdaBoost预测模型中,训练ELM_AdaBoost预测模型,对滚动轴承进行退化趋势和剩余寿命预测。仿真实验结果表明,该方法具有更高的预测精度,其预测效果优于ELM预测模型及基于EMD和ELM_AdaBoost预测模型,能够更好对滚动轴承的剩余寿命进行预测。  相似文献   

15.
针对支持向量回归机在预测铣刀寿命时惩罚参数和核函数参数难确定、不同的参数设置对预测效果影响较大的问题,提出了自适应变异粒子群算法。在支持向量回归算法的基础上,引入AMPSO优化SVR参数,建立AMPSO与SVR相结合的数控铣刀寿命预测模型。通过硬质合金钢铣刀铣削的实验验证表明,相比于网格搜索法和神经网络算法,AMPSO-SVR算法在测试样本集的平均相对预测误差低至0.72%,相较前两者预测误差更小,可准确预测数控铣刀寿命,为数控加工过程中的换刀决策提供依据。  相似文献   

16.
刘国  姚齐水  余江鸿 《机电工程》2022,39(4):501-506
传统的滚动轴承寿命预测都需要进行全寿命实验,并且需要数学或物理模型处理大量的实验数据,针对这一问题,提出了一种基于无失效数据的滚动轴承剩余寿命非等间隔灰色预测方法.首先,采用滚动轴承的无失效数据模型和E-Bayes理论,计算出了每一个截尾时间滚动轴承可靠度估计值;然后,将滚动轴承每个截尾时间计算出的可靠度估计值进行了等...  相似文献   

17.
为了准确掌握滚动轴承剩余寿命信息,评估轴承的退化状态,提出了一种基于深度学习理论的卷积神经网络模型,对轴承剩余使用寿命进行预测。通过选取最新的ResN eX t作为网络骨干,设计卷积神经网络模型。该网络模型可以堆叠大量的卷积层从而抽取到丰富的语义特征,即使在训练数据较少时仍然具有很好的泛化能力。最后在公开数据集上对算法进行了训练和验证,表明该方法可以根据滚动轴承的振动信号较为准确地对轴承的剩余使用寿命进行预测。  相似文献   

18.
三、滚动轴承残余寿命评价的研究 1.传统轴承寿命计算公式及其修正 在采用SPM方法和FTA技术对滚动轴承状态进行评估之后,随之而来的问题是如何判断轴承的剩余寿命。这一类问题在流程工业大型齿轮箱中具有重要的实际意义和研究价值。 由Hertz理论推导出传统的线接触疲劳寿命(设计寿命)基本公式 式中:L——滚动轴承寿命;Q_c——滚动体额定动负荷,L=10~6转时;Q——滚动体负荷;c——Hertz压缩常数量、单位接触长度量,常数;h——油膜厚度,取常数;e——轴向负载影响系数,常数。  相似文献   

19.
剩余寿命预测技术是装备智能维护与智能制造的关键技术。滚动轴承作为旋转机械装备关键零/部件之一,对其进行剩余寿命预测具有重要工程与实际意义,因此提出一种基于分层稀疏编码的滚动轴承剩余寿命预测方法。该方法作为深度学习模型的一种,克服了传统机器学习模型需要大量训练、标签学习以及鲁棒性差的缺点,有效提高了轴承剩余寿命预测精度。实验结果表明该方法具有更高的预测精度和更好的鲁棒性。  相似文献   

20.
滚动轴承寿命预测计算新方法   总被引:2,自引:2,他引:0  
查全  程俊景 《轴承》2001,(4):1-6
滚动轴承寿命预测新模型考虑了各方面的因素 ,如材料、表面缺陷、粗糙度等等。主要介绍了新模型及使用方法 ,并给出了计算实例。附图 2幅 ,表 2个 ,参考文献 8篇。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号