首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanoscale powder of SiO2/Al2O3/TiO2 composite was prepared by sol-gel method. Microstructure and morphology of the obtained samples were characterized by infrared (IR), X-ray diffraction (XRD) analysis and transmission electron microscopy (TEM). It is proved that infrared absorbing peaks of the samples are in waveband range of 1300-400 cm^-1, and the peak shape changes with their component. Mechanism of the infrared peak's positions and shapes which changes with the size and morphology of the prepared nano-particles has been tentatively discussed.  相似文献   

2.
Alumina-iron nanocomposite powders were prepared by a two-step process. In the first step, α-Al2O3-FeCl2 powder mixture was formed by mixing α-Al2O3 powders with FeCl2 solution followed by drying. In the second step, the FeCl2 in the dry power mixture was selectively reduced to iron particles. A reduction temperature of 750℃ for 15 min in dry H2 was chosen based on the thermodynamic calculations. The concentration of iron in FeCl2 solution was calculated to be 20 vol. pct in the final composite. Two techniques were used to produce composite bulk materials. The Al2O3 nanocomposite powders were divided to two batches. The first batch of the produced mixture was hot pressed at 1400℃ and 27 MPa for 30 min in a graphite die. To study the effect of oxygen on the Al2O3/Fe interface bonding and mechanical properties of the composite, the second batch was heat treated in air at 700℃ for 20 min to partially oxidize the iron particles before hot pressing. Characterization of the composites was undertaken by conventional density measurements, X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electron probe micro analysis (EPMA). The suggested processing route (mixing, reduction and hot pressing) produces ceramic-metal nanocomposite much tougher than the pure Al2O3. The fracture strength of the produced Al2O3/Fe nanocomposite is nearly twice that of the pure Al2O3. The presence of spinel phase, FeAl204, as thick layer around the Fe particles in the Al2O3 matrix has a detrimental effect on interfacial bonding between Fe and AI203 and the fracture properties of the composite.  相似文献   

3.
Fe alloy composites reinforced with in-situ titanium carbide(Ti C) particles were fabricated by reactive sintering using different reactant C/Ti ratios of 0.8,0.9,1 and 1.1 to investigate the microstructure and mechanical properties of in-situ Ti C/Fe alloy composites.The microstructure showed that the in-situ synthesized Ti C particles were spherical with a size of 1–3 μm,irrespective of C/Ti ratio.The stoichiometry of in-situ Ti C increased from 0.85 to 0.88 with increasing C/Ti ratio from 0.8 to 0.9,but remained almost unchanged for C/Ti ratios between 0.9 and 1.1 due to the same driving force for carbon diffusion in Ti Cxat the common sintering temperature.The in-situ Ti C/Fe alloy composite with C/Ti = 0.9 showed improved mechanical properties compared with other C/Ti ratios because the presence of excess carbon(C/Ti = 1 and 1.1) resulted in unreacted carbon within the Fe alloy matrix,while insufficient carbon(C/Ti = 0.8)caused the depletion of carbon from the Fe alloy matrix,leading to a significant decrease in hardness.This study presents that the maximized hardness and superior strength of in-situ Ti C/Fe alloy composites can be achieved by microstructure control and stoichiometric analysis of the in-situ synthesized Ti C particles,while maintaining the ductility of the composites,compared to those of the unreinforced Fe alloy.Therefore,we anticipate that the in-situ synthesized Ti C/Fe alloy composites with enhanced mechanical properties have great potential in cutting tool,mold and roller material applications.  相似文献   

4.
C/C–ZrB_2–ZrC–SiC composites were fabricated by polymer infiltration and pyrolysis(PIP) with a preform of C_f/ZrB_2. The carbon fibers and the resin carbon were coated with ceramic layer after PIP in the composites. The composite presents a pseudo-plastic fracture due to deflection of cracks and pullout of fibers.The composite has a higher bending strength by this method in comparison with the conventional PIP process due to fewer heat treatment cycles. The static oxidation test shows that the mass loss of the composites is no more than 1% after 20 min oxidation at 1100 °C. The "core–shell" structure between ZrC–SiC ceramic and other phases plays a positive role in preventing the inward diffusion of oxygen. The ablation resistance of the C/C–ZrB_2–ZrC–SiC composite samples was tested using a plasma generator. After ablation for 120 s, the mass and linear ablation rates of the composites are 4.65 mg cm~(-2)s~(-1) and 2.46 μm s~(-1), respectively. The short carbon layer shows a better ablation resistance than the nonwoven carbon fabric layer after the ceramic coating is peeled off because of its higher ceramic content.  相似文献   

5.
Composite films were prepared by two different routes: lead zirconate titanate (PZT) particles coated with polyaniline (PAni) dispersed in a polymeric matrix of polyvinylidene fluoride (PVDF); and PZT particles and PAni powder dispersed separately in the polymer matrix. The electrical conductivity of the particles was controlled by the protonation and de-protonation of PAni in solution with controlled pH. The results indicate that the percolation threshold of the composite made of PZT coated with a conductive layer (PZT-PAni) is in the range of 20 vol.% to 30 vol.% of PZT-PAni. The PZT-PAni/PVDF composite redoped in solution with pH 3.7 showed the best results in terms of longitudinal piezoelectric coefficient (d33) in samples containing 30 vol.% of ceramic particles due to the equilibrium between conduction and poling effects on the composite. The poling process of the composite sample required just 5 MV/m electric field applied during 15 min. Furthermore, the composite was used as sensor in structural health monitoring (SHM), showing the possibility to propose it as a functional material.  相似文献   

6.
Micro-sized(1030.3±178.4 nm) and nano-sized(50.4±8.0 nm) Fe3O4 particles have been fabricated through hydrogen thermal reduction of α-Fe2O3 particles synthesized by means of a hydrothermal process.The morphology and microstructure of the micro-sized and the nano-sized Fe3O4 particles were characterized by X-ray diffraction,field-emission gun scanning electron microscopy,transmission electron microscopy and highresolution electron microscopy.The micro-sized Fe3O4 particles exhibit porous structure,while the nano-sized Fe3O4 particles are solid structure.Their electrochemical performance was also evaluated.The nano-sized solid Fe3O4 particles exhibit gradual capacity fading with initial discharge capacity of 1083.1 mAhg-1 and reversible capacity retention of 32.6% over 50 cycles.Interestingly,the micro-sized porous Fe3O4 particles display very stable capacity-cycling behavior,with initial discharge capacity of 887.5 mAhg-1 and charge capacity of 684.4 mAhg-1 at the 50th cycle.Therefore,77.1% of the reversible capacity can be maintained over 50 cycles.The micro-sized porous Fe3O4 particles with facile synthesis,good cycling performance and high capacity retention are promising candidate as anode materials for high energy-density lithium-ion batteries.  相似文献   

7.
The liquid-phase coating method was used to deposit Y2O3 ceramic on the surface of α-Al2O3. The coated-Al2O3p/6061AI composites were produced using squeeze casting technology. The microstructure and tensile properties of the composites were analysed and studied. The results showed that the coated AI2O3 particles are able to disperse homogeneously in the aluminum liquid. The microstructure of the composites is more even in comparison with that of as-received powders. The tensile testing indicated that mechanical properties of the coated-AI2O3p/6061AI composites are better than those of uncoated particles. In the composite with 30% volume fraction, the tensile strength, yield strength as well as elongation is increased by 29.8%, 38.4% and 10.3%, respectively. The SEM analysis of fracture indicated that the dimples of the coated-Al2O3p/6061Al composites are more even.  相似文献   

8.
The in situ formed Al2O3 and TiB2 particulates reinforced Al-3.3 wt pct Cu alloy composite hasbeen successfully fabricated by reaction pressing of TiO2, Al, B and CuO powders. The in situformed Al2O3 and TiB2 particulates with a size from 10 nm to 2 μm are unifOrmly distributedin the matrix. The composite has a tensiIe Strength of 482 MPa and an elastic modulus of103.3 GPa.  相似文献   

9.
Infiltration-in situ reaction synthesis of Cf /TiAl3 composite was investigated. The as-cast material was obtained by titanium particles, carbon fibers and pure aluminum. Titanium particles and carbon fibers were mixed and pressed to form a preform firstly, and then molten pure aluminum was pressed into the preform, subsequently, cooled rapidly. In situ reaction samples were obtained by heating the as-cast material from 600 to 1000 °C for 1 h. The microstructural evolution of in situ reaction samples was an...  相似文献   

10.
Ceramic tapes, containing Al2O3-25 wt pct TiB2(B) and Al2O3-25 wt pct nano-TiC (c), have been obtained by tape casting process. Numerous tapes (about 60~80 tapes) were prepared by stacking in turn the composition (B) and (C), laminating under 10 MPa pressure, eliminating the solvent and burning out the polymer additives. The final green bodies were hot pressed at 1750℃ and 30 MPa. The composite has a bending strength of 568 MPa and a fracture toughness of 5.8 M Pa·m1/2. SEM analysis exhibits that Al2O3 particle growth was inhibited by TiC particles in C. but TiB2 particles could not hinder Al2O3 growth in B. The curves of GTA indicates that all organic additives could be removed completely above 600℃  相似文献   

11.
Graphite/TiO2 composite particles were obtained by sol-gel technique in this paper. The structure and characteristic of the composite particles are analyzed by XRD, SEM and TG-DTA. The electrorheological properties of the ER fluid containing the particles were measured by a Couette-type rheometer under shear rates of 1~136 s-1 and AC electric fields of 0~3 kV/mm. The experimental results show that the leaking current density of the ER fluid is higher than that of pure titanium dioxide particles dispersed in damping oil. The shear yield stress of the ER fluid increases with increasing electric field and exhibits a typical Bingham flow behavior. The suspension demonstrates an excellent ER performance (τ/τ0=1200) compared with conventional ER fluids (τ/τ0 ≤500). The sedimentation of the ER fluid is improved obviously due to the coating effect of the particles.  相似文献   

12.
By using a new method, 60CoΥ-ray irradiation, Fe3O4 magnetic nano-particles were successfully synthesized at room temperature under ambient pressure. The structure, morphology and magnetic properties of these nano-particles were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM) and vibrating sample magnetometer (VSM), respectively. The radiation formation mechanism was also discussed. The results show that the absorbed dose can greatly influence the structure, morphology and magnetic properties of the products. XRD and TEM studies show that the product prepared byΥ-ray irradiation (10 kGy) is pure Fe3O4 phase and the mean diameter of these nano-particles is about 21 nm. The Fe3O4 nano-particles synthesized byΥ-ray irradiation (10 kGy) are mainly in small cubic shape and the size uniformity of these particles is good.  相似文献   

13.
Traditional ionic liquids are sensitive to humidity but with long response time and nonlinear response.Pure liquid-state ionic liquids are usually hard for dehydration which have ultralong response time for humidity sensing.The immobilization of ionic liquids provide a possible way for high performance humidity sensing.Hydrophobic materials and structures also promised faster response in humidity sensing,because of easier desorption of water.In this work,we prepared flexible humidity sensitive composites based on hydrophobic ionic liquid and polymer.The combination of hydrophobic ionic liquid with hydrophobic polymer realized linear response,high sensitivity with low hysteresis to humidity.By adjusting the ratio of ionic liquid,not only the impedance but also the hydrophobicity of composite could be modulated,which had a significant influence on the humidity sensing performance.The morphology and microstructure of the material also affected its interaction with water molecules.Due to the diverse processing methods of polymer,highly transparent film fabricated by spinning-coating and nanofibrous membrane fabricated by electrospinning could be prepared and exhibited different response time,which could be used for different application scenarios.Especially,the fibrous membrane made with electrospinning method showed an ultrafast response and could distinguish up to 120 Hz humidity change,due to its fibrous structure with high specific surface area.The humidity sensors with ultrafast,linear response and high sensitivity showed potential applications in human respiratory monitoring and flexible non-contact switch.To better show the multifunction of ionic liquid-polymer composite,as a proof of concept,we fabricated an integrated humidity sensitive color change device by utilizing lower ionic liquid content composite for sensing in the humidity sensing module and higher ionic liquid content composite as the electrolyte in the electrochromic module.  相似文献   

14.
An atomic layer deposition (ALD) method has been employed to synthesize Fe3O4/graphene and Ni/graphene composites. The structure and microwave absorbing properties of the as-prepared composites are investigated. The surfaces of graphene are densely covered by Fe3O4 or Ni nanoparticles with a narrow size distribution, and the magnetic nanoparticles are well distributed on each graphene sheet without significant conglomeration or large vacancies. The coated graphene materials exhibit remarkably improved electromagnetic (EM) absorption properties compared to the pristine graphene. The optimal reflection loss (RL) reaches -46.4 dB at 15.6 GHz with a thickness of only 1.4 mm for the Fe3O4/graphene composites obtained by applying 100 cycles of Fe2O3 deposition followed by a hydrogen reduction. The enhanced absorption ability arises from the effective impedance matching, multiple interfacial polarization and increased magnetic loss from the added magnetic constituents. Moreover, compared with other recently reported materials, the composites have a lower filling ratio and smaller coating thickness resulting in significantly increased EM absorption properties. This demonstrates that nanoscale surface modification of magnetic particles on graphene by ALD is a very promising way to design lightweight and high-efficiency microwave absorbers.  相似文献   

15.
This work is focused on the combination of two building-blocks, nanocrystalline TiO2 particles and polyaniline conductive films (PAni). The preparation of new nanostructured composite materials, displaying electron- and proton-conductive properties, to be used for the fabrication of new and superior energy storage devices was envisaged. The semiconducting TiO2 nanoparticles were obtained by means of a hydrothermal route. The PAni films were prepared on glassy carbon electrodes by electrochemical polymerization, under potential dynamic conditions. After characterization by X-ray diffraction, transmission electron microscopy or scanning electron microscopy and electrochemical techniques, the nanocrystalline particles were immobilized in the polymer matrix. The incorporation of the TiO2 was achieved using two distinct approaches: during the polymer growth or by deposition over previously prepared PAni films. The results demonstrate that the PAni morphology depends on the experimental conditions used during the polymer growth. After TiO2 immobilization, the best electrochemical response was obtained for the nanocomposite structure produced through the TiO2 incorporation after the PAni film synthesis. The modified electrodes were structurally and morphologically characterized and their electro-catalytic activity towards the hydrogen evolution reaction was analyzed. A new electrochemical performance related with the oxidation of molecular hydrogen entrapped in the PAni-TiO2 matrix was observed for the modified electrode after TiO2 incorporation. This behavior can be directly associated with the synergetic combination of the TiO2 and PAni, and is dependent on the amount of the semiconductor.  相似文献   

16.
By using a new method, ^60Co γ-ray irradiation, Fe3O4 magnetic nano-particles were successfully synthesized at room temperature under ambient pressure. The structure, morphology and magnetic properties of these nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM) and vibrating sample magnetometer (VSM), respectively. The radiation formation mechanism was also discussed. The results show that the absorbed dose can greatly influence the structure, morphology and magnetic properties of the products. XRD and TEM studies show that the product prepared by γ-ray irradiation (10 kGy) is pure FesO4 phase and the mean diameter of these nano-particles is about 21 nm. The Fe3O4 nano-particles synthesized by γ-ray irradiation (10 kGy) are mainly in small cubic shape and the size uniformity of these particles is good.  相似文献   

17.
The selected area electron diffraction (SAED) pattern of magnetic iron oxide core/gold shell nanoparticles has been studied. For the composite particles with mean size less than 10 nm, their SAED pattern is found to be different from either the pattern of pure Fe oxide nanoparticles or that of pure Au particles. Based on the fact that the ring diameters of these composite particles fit the characteristic relation for the fcc structure, the Au atoms on surfaces of the concerned particles are supposed to pack in a way more tightly than they usually do in pure Au nanoparticles. The driving force for this is the coherency strain which enables the shell material at the heterostructured interface to adapt the lattice parameters of the core.  相似文献   

18.
《材料科学技术学报》2019,35(11):2570-2581
The variations of coarse intermetallic particles in hot-extruded 7055 aluminum alloys with 0.041 wt%Fe and 0.024 wt% Si increasing to 0.272 wt% Fe and 0.134 wt% Si were investigated.The particle stimulated nucleation(PSN) behaviors for different kind of coarse particles were detailly analyzed by EBSD.Moreover,the effect of PSN responding to Fe and Si contents on recrystallization and tensile properties of 7055 alloys was evaluated.With increasing Fe and Si contents,the size and number density of coarseη/S particles are reduced,while the number densities of coarse Al_7Cu_2 Fe and Mg_2Si particles are both increased and the coarse Al_7Cu_2 Fe particles transform from rod-like to irregular.More PSN recrystallized grains with predominant orientations deviated from the extruded fiber textures are stimulated by the irregular Al_7Cu_2 Fe and Mg_2Si particles,because a higher degree of local non-uniform deformation is produced.The rod-like Al_7Cu_2 Fe particles cause the greatest degree of local non-uniform deformation owing to the largest aspect ratio,but the shape also restricts the area of particle deformation zone(PDZ) resulting in fewer PSN recrystallized grains.The irregular η/S particles give rise to the lowest degree of local non-uniform deformation and fewest PSN recrystallized grains with the major orientations close to the extruded fiber textures.Consequently,despite the number and size of coarse η/S particles are reduced,the proportion of high angle grain boundaries(HAGBs) is increased and the extruded fiber textures are weakened with Fe and Si contents increasing,because of the increased Al_7Cu_2 Fe and Mg_2Si particles.The strength is slightly declined by the weakened 111//ED(extrusion direction) fiber texture,while the elongation is reduced for a larger number of coarse particles and more HAGBs with higher Fe and Si contents.  相似文献   

19.
DNA and silica-coated magnetic particles entangle and form visible aggregates under chaotropic conditions with a rotating magnetic field, in a manner that enables quantification of DNA by image analysis. As a means of exploring the mechanism of this DNA quantitation assay, nanoscale SiO2-coated Fe304 (Fe3O4@SiO2) particles are synthesized via a solvothermal method. Characterization of the particles defines them to be -200 nm in diameter with a large surface area (141.89 m2/g), possessing superparamagnetic properties and exhibiting high saturation magnetization (38 emu/g). The synthesized Fe3O4@SiO2 nanoparticles are exploited in the DNA quantification assay and, as predicted, the nanoparticles provide better sensitivity than commercial microscale Dynabeads for quantifying DNA, with a detection limit of 4 kilobase-pair fragments of human DNA. Their utility is proven using nanoparticle DNA quantification to guide efficient polymerase chain reaction (PCR) amplification of short tandem repeat loci for human identification.  相似文献   

20.
Hexagonal and triangular monodisperse Fe3O4 nanosheets have been synthesized via a two-step microemulsion solvothermal approach in which uniform Fe3O4 nanoparticles are first prepared and then these hydrophobic nanocrystals are dispersed in a uniform microemulsion environment as "seeds" for further re-growth through a secondary solvothermal process. The growth of anisotropic morphologies has been explained by the presence and orientation of twin planes in the face-centered cubic Fe3O4 which direct the shape of the growing particles. In particular, reentrant grooves resulting from twin planes are favorable sites for the addition of adatoms, leading to anisotropic growth. Triangular nanosheets are believed to contain one twin face which directs the growth of the primary particles in two dimensions. Hexagonal nanosheets are believed to contain two parallel planes that allow the growth edges to regenerate one another. The growth mechanism is evidenced by the analysis of high-resolution transmission electron microscopy (HRTEM) results and the as-prepared Fe3O4 nanoparticles have been shown to be an effective catalyst in the synthesis of quinoxaline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号